Towards industrialization of polymer solar cells: material processing for upscaling

In this review, we provide insights into the key aspects of material processing for the industrialization of organic solar cells using printing solutions. The manuscript details the adjustments found in the literature about ink formulation and deposition parameters required to scale up the model system based on P3HT:PC60BM, from spin coating to doctor blade or inkjet printing and finally to roll-to-roll deposition. We analyze the particular problems associated with each technique in combination with the common problems linked to the choice of the procedure like the material consumption, the presence of inhomogeneities or time expenses. Moreover, we highlight the use of non-hazardous chemicals and the achievements done in upscaling technology which is nowadays a major topic in the construction of affordable light conversion devices.

[1]  F. Krebs,et al.  Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion , 2011, Nanotechnology.

[2]  E. Müller,et al.  Moving through the phase diagram: morphology formation in solution cast polymer-fullerene blend films for organic solar cells. , 2011, ACS nano.

[3]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[4]  Sung Cheol Yoon,et al.  High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives , 2010 .

[5]  Christoph J. Brabec,et al.  Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials , 2013 .

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  Sheng-Fu Horng,et al.  Polymer solar cell by blade coating , 2009 .

[8]  Trisha L. Andrew,et al.  Effect of synthetic accessibility on the commercial viability of organic photovoltaics , 2013 .

[9]  Soonil Hong,et al.  Slot-die coating parameters of the low-viscosity bulk-heterojunction materials used for polymer solarcells , 2013 .

[10]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[11]  Markus Hösel,et al.  OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools , 2013 .

[12]  Han‐Ki Kim,et al.  Organic solar cells fabricated on inkjet-printed indium tin oxide electrodes , 2012 .

[13]  R. J. Kline,et al.  Effect of Processing Additives on the Solidification of Blade‐Coated Polymer/Fullerene Blend Films via In‐Situ Structure Measurements , 2013 .

[14]  Christoph J. Brabec,et al.  Performance Analysis of Printed Bulk Heterojunction Solar Cells , 2006 .

[15]  Nigel J. Alley,et al.  Investigation of recombination dynamics for indium tin oxide-free organic photovoltaics by illumination dependence study , 2013 .

[16]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[17]  R. Po’,et al.  From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective , 2014 .

[18]  Franky So,et al.  Metal oxides for interface engineering in polymer solar cells , 2012 .

[19]  Junbiao Peng,et al.  Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer. , 2014, ACS applied materials & interfaces.

[20]  Christoph J. Brabec,et al.  Solution‐Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin‐Film Solar Cells , 2011 .

[21]  K. S. Narayan,et al.  Area dependent efficiency of organic solar cells , 2008 .

[22]  Christoph J. Brabec,et al.  Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations , 2014 .

[23]  Mikkel Jørgensen,et al.  The state of organic solar cells—A meta analysis , 2013 .

[24]  Hsiao-Wen Zan,et al.  Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell , 2011 .

[25]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[26]  Ulrich S Schubert,et al.  Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. , 2008, Soft matter.

[27]  Frederik C. Krebs,et al.  A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air , 2008, Nanotechnology.

[28]  C. Sotomayor‐Torres,et al.  Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor , 2014 .

[29]  M. Wegener,et al.  A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers , 2010 .

[30]  Jianhui Hou,et al.  Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Non‐aromatic and Non‐chlorinated Solvents , 2014, Advanced materials.

[31]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[32]  M. Liberatore,et al.  Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells , 2009 .

[33]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[34]  J. Ajuria,et al.  Inverted ITO-free organic solar cells based on p and n semiconducting oxides. New designs for integration in tandem cells, top or bottom detecting devices, and photovoltaic windows , 2011 .

[35]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[36]  Soo‐Hyoung Lee,et al.  Polymer solar cells based on inkjet-printed PEDOT:PSS layer , 2009 .

[37]  U. Schubert,et al.  Inkjet printing of well-defined polymer dots and arrays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[38]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[39]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[40]  Frederik C. Krebs,et al.  Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate , 2004 .

[41]  Frederik C. Krebs,et al.  Technological status of organic photovoltaics (OPV) , 2013 .

[42]  Stelios A. Choulis,et al.  Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids , 2012 .

[43]  Frederik C. Krebs,et al.  Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment , 2011 .

[44]  Mikkel Jørgensen,et al.  Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. , 2011, ACS nano.

[45]  S. Allard,et al.  Molecular Orientation in Polymer Films for Organic Solar Cells Studied by NEXAFS , 2012 .

[46]  Bryan D. Vogt,et al.  High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing , 2011 .

[47]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[48]  Jun Woo Kim,et al.  Transparent conductive film with printable embedded patterns for organic solar cells , 2013 .

[49]  Jan Genoe,et al.  Polymer based organic solar cells using ink-jet printed active layers , 2008 .

[50]  Jea-Gun Park,et al.  Effect of Metal-Reflection and Surface-Roughness Properties on Power-Conversion Efficiency for Polymer Photovoltaic Cells , 2009 .

[51]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[52]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[53]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[54]  Ifor D. W. Samuel,et al.  Molecular Weight Dependence of Exciton Diffusion in Poly(3‐hexylthiophene) , 2013 .

[55]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[56]  Sangkyu Lee,et al.  Bladed organic photovoltaic cells , 2011 .

[57]  G. Jung,et al.  Solution processable micron- to nanoscale conducting polymer patterning utilizing selective surface energy engineering , 2010 .

[58]  Christoph J. Brabec,et al.  Determining the coating speed limitations for organic photovoltaic inks , 2013 .

[59]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[60]  H. Sirringhaus,et al.  All‐Inkjet‐Printed, All‐Air‐Processed Solar Cells , 2014 .

[61]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[62]  Ronn Andriessen,et al.  Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells , 2012 .

[63]  Christoph J. Brabec,et al.  An Efficient Solution‐Processed Intermediate Layer for Facilitating Fabrication of Organic Multi‐Junction Solar Cells , 2013 .

[64]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[65]  C. Brabec,et al.  Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique , 2000 .

[66]  C. Waldauf,et al.  Inkjet-printed polymer-fullerene blends for organic electronic applications , 2012 .

[67]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[68]  W. Marsden I and J , 2012 .

[69]  Christoph J. Brabec,et al.  Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing , 2011 .

[70]  Mikkel Jørgensen,et al.  Roll‐to‐Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration , 2013 .

[71]  A. Dinia,et al.  Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer , 2013 .

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.