Regulating the 4d-band center of Mo atoms in β-Mo2C to promote lithium-oxygen reactions

[1]  Huifeng Li,et al.  Status and Prospects of MXene‐Based Lithium–Oxygen Batteries: Theoretical Prediction and Experimental Modulation , 2023, Advanced Energy Materials.

[2]  Xinyue Cao,et al.  Improving the catalytic activity of two-dimensional Mo2C for hydrogen evolution reaction by doping and vacancy defects , 2022, International Journal of Hydrogen Energy.

[3]  H. Liming,et al.  Fe-doped Mo2C for Boosting Electrocatalytic N2 Reduction , 2022, Inorganic Chemistry Communications.

[4]  Libo Wang,et al.  Carbon dioxide adsorption of two-dimensional Mo2C MXene , 2022, Diamond and Related Materials.

[5]  Ling Huang,et al.  Stabilizing Li-O2 Batteries with Multifunctional Fluorinated Graphene. , 2022, Nano letters.

[6]  C. Shu,et al.  V2C MXene enriched with -O termination as high-efficiency electrocatalyst for lithium-oxygen battery , 2022, Applied Materials Today.

[7]  T. Ishizaki,et al.  Effect of Surface Modification for Carbon Cathode Materials on Charge–Discharge Performance of Li-Air Batteries , 2022, Materials.

[8]  Xiao Liu,et al.  D-band frontier: A new hydrogen evolution reaction activity descriptor of Pt single-atom catalysts , 2022, Journal of Energy Chemistry.

[9]  Zhipeng Liu,et al.  Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting , 2022, Chemical Engineering Journal.

[10]  Jingyu Sun,et al.  Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li-O2 Battery under a High Rate. , 2021, ACS nano.

[11]  Xianwei Fu,et al.  Descriptors for the Evaluation of Electrocatalytic Reactions: d‐Band Theory and Beyond , 2021, Advanced Functional Materials.

[12]  Xiaowei Mu,et al.  Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies , 2021 .

[13]  M. Yao,et al.  Investigation on the Structure–Performance Correlation of TiC MXenes as Cathode Catalysts for Li-O2 Batteries , 2021, The Journal of Physical Chemistry C.

[14]  Shiping Huang,et al.  Transition metal atoms (Fe, Co, Ni, Cu, Zn) doped RuIr surface for the hydrogen evolution reaction: A first-principles study , 2021, Applied Surface Science.

[15]  K. Jensen,et al.  Cesium-Coated Halide Perovskites as a Photocathode Material: Modeling Insights. , 2021, The journal of physical chemistry letters.

[16]  Xuebin Yu,et al.  A review of rechargeable aprotic lithium–oxygen batteries based on theoretical and computational investigations , 2021 .

[17]  Dong Wook Kim,et al.  Polyelemental Nanoparticles as Catalysts for a Li-O2 Battery. , 2021, ACS nano.

[18]  Wei Chen,et al.  Application of functionalized graphene in Li–O2 batteries , 2020, Nanotechnology.

[19]  Lipeng Zhang,et al.  A universal descriptor based on pz-orbitals for the catalytic activity of multi-doped carbon bifunctional catalysts for oxygen reduction and evolution. , 2020, Nanoscale.

[20]  C. Sevik,et al.  CVD synthesis and characterization of thin Mo 2 C crystals , 2020 .

[21]  P. Sen,et al.  Catalytic properties of α-MnO2 for Li-air battery cathodes: a density functional investigation. , 2020, Physical chemistry chemical physics : PCCP.

[22]  Carlos Segovia Fernández,et al.  Heterojunction-Composited Architecture for Li–O2 Batteries with Low Overpotential and Long-Term Cyclability , 2020, ACS Applied Energy Materials.

[23]  Jianli Cheng,et al.  Unraveling Reaction Mechanisms of Mo2C as Cathode Catalyst in Li-CO2 Battery. , 2020, Journal of the American Chemical Society.

[24]  W. Saidi,et al.  Graphene Activation Explains the Enhanced Hydrogen Evolution on Graphene-Coated Molybdenum Carbide Electrocatalysts. , 2020, The journal of physical chemistry letters.

[25]  Yulin Ma,et al.  Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries , 2020 .

[26]  Xunliang Liu,et al.  Mechanistic evaluation of Li2O2 adsorption on carbon nanotube electrodes: A theoretical study , 2020 .

[27]  A. Natan,et al.  Trends in the Adsorption of Oxygen and Li2O2 on Transition-Metal Carbide Surfaces: A Theoretical Study , 2019, The Journal of Physical Chemistry C.

[28]  Hao Huang,et al.  Intrinsic factors affecting the catalytic activity of doped TiC as potential cathode in Li-O2 batteries , 2019, Applied Surface Science.

[29]  Zhen Zhou,et al.  Understanding Rechargeable Li−O 2 Batteries via First‐Principles Computations , 2019, Batteries & Supercaps.

[30]  K. Xiao,et al.  Heterostructures Composed of N-Doped Carbon Nanotubes Encapsulating Cobalt and β-Mo2 C Nanoparticles as Bifunctional Electrodes for Water Splitting. , 2019, Angewandte Chemie.

[31]  P. Shen,et al.  N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction , 2018 .

[32]  Daniel Adjei Agyeman,et al.  High‐Energy‐Density Metal–Oxygen Batteries: Lithium–Oxygen Batteries vs Sodium–Oxygen Batteries , 2017, Advanced materials.

[33]  Chenghao Yang,et al.  A high-performance oxygen electrode for Li–O2 batteries: Mo2C nanoparticles grown on carbon fibers , 2017 .

[34]  Chao Ma,et al.  A Composite of Carbon‐Wrapped Mo2C Nanoparticle and Carbon Nanotube Formed Directly on Ni Foam as a High‐Performance Binder‐Free Cathode for Li‐O2 Batteries , 2016 .

[35]  Linda F Nazar,et al.  Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. , 2015, The journal of physical chemistry letters.

[36]  Z. Wen,et al.  Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li–O2 Battery , 2015 .

[37]  K. Amine,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[38]  J. Nørskov,et al.  Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. , 2013, The Journal of chemical physics.

[39]  Volker L. Deringer,et al.  Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. , 2011, The journal of physical chemistry. A.

[40]  Ye Xu,et al.  O2 reduction by lithium on Au(111) and Pt(111). , 2010, The Journal of chemical physics.

[41]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[42]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[43]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[44]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[47]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[48]  E. Rudy,et al.  CONSTITUTION OF BINARY MOLYBDENUM--CARBON ALLOYS. , 1967 .