Implementation of a Variable D-H Parameter Model for Robot Calibration Using an FCMAC Learning Algorithm

Current robot calibration schemes usually employ calibration models with constant error parameters. Consequently,they are inevitably subject to a certain degree of locality, i.e., the calibrated error parameters (CEPs) will produce the desiredaccuracy only in certain regions of the robot workspace. To deal with the locality phenomenon, CEPs that vary in differentregions of the robot workspace may be more appropriate. Hence, we propose a variable D-H (Denavit and Hartenberg)parameter model to formulate variations of CEPs. An FCMAC (Fuzzy Cerebellar Model Articulation Controller) learningalgorithm is used to implement the proposed variable D-H parameter model. Simulations and experiments that verify theeffectiveness of the proposed calibration scheme based on the variable D-H parameter model are described.

[1]  F. B. Prinz,et al.  A Perturbation Approach to Robot Calibration , 1987 .

[2]  Daniel E. Whitney,et al.  Industrial Robot Forward Calibration Method and Results , 1986 .

[3]  Chia-Hsiang Menq,et al.  Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure , 1991, Int. J. Robotics Res..

[4]  F. B. Prinz,et al.  A Perturbation Approach to Robot Calibration , 1987 .

[5]  Bahram Ravani,et al.  An overview of robot calibration , 1987, IEEE Journal on Robotics and Automation.

[6]  S A Hayati,et al.  Inverse kinematic solution for near-simple robots and its applications to robot calibration , 1986 .

[7]  J.S. Bay Autonomous parameter identification by optimal learning control , 1993, IEEE Control Systems.

[8]  Filson H. Glanz,et al.  Application of a General Learning Algorithm to the Control of Robotic Manipulators , 1987 .

[9]  Chi-Haur Wu,et al.  A Kinematic CAD Tool for the Design and Control of a Robot Manipulator , 1984 .

[10]  C C Lee,et al.  FUZZY LOGIC IN CONTROL SYSTEM: FUZZY LOGIC CONTROLLER CONTROLLER PART I , 1990 .

[11]  J. Chen,et al.  Positioning error analysis for robot manipulators with all rotary joints , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[12]  John M. Hollerbach,et al.  Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints , 1991, IEEE Trans. Robotics Autom..

[13]  Jean-Michel Renders,et al.  Kinematic calibration and geometrical parameter identification for robots , 1991, IEEE Trans. Robotics Autom..

[14]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[15]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .

[16]  E. B. Magrab,et al.  A General Procedure to Evaluate Robot Positioning Errors , 1987 .

[17]  Hanqi Zhuang,et al.  A complete and parametrically continuous kinematic model for robot manipulators , 1992, IEEE Trans. Robotics Autom..

[18]  Michael A. Peshkin,et al.  Complete parameter identification of a robot from partial pose information , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[19]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[20]  K. C. Gupta,et al.  Improved numerical solutions of inverse kinematics of robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[21]  Derek A. Linkens,et al.  A fuzzified CMAC self-learning controller , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[22]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[23]  David E. Orin,et al.  A real-time computer architecture for inverse kinematics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[24]  Farhad Azadivar,et al.  The effect of joint position errors of industrial robots on their performance in manufacturing operations , 1987, IEEE J. Robotics Autom..

[25]  Jeff S. Shamma,et al.  A Method for Inverse Robot Calibration , 1987 .

[26]  Louis J. Everett,et al.  Kinematic modelling for robot calibration , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[27]  René Mayer,et al.  A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking , 1994, IEEE Trans. Robotics Autom..

[28]  Wisama Khalil,et al.  Identifiable Parameters and Optimum Configurations for Robots Calibration , 1991, Robotica.

[29]  William K. Veitschegger,et al.  Robot calibration and compensation , 1988, IEEE J. Robotics Autom..

[30]  Jeff Ho,et al.  Design of robot accuracy compensator after calibration , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[31]  Morris Driels,et al.  Significance of observation strategy on the design of robot calibration experiments , 1990, J. Field Robotics.

[32]  Benjamin W. Mooring,et al.  Determination and specification of robot repeatability , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[33]  Arthur C. Sanderson,et al.  A prototype arm signature identification system , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[34]  Robert P. Judd,et al.  A technique to calibrate industrial robots with experimental verification , 1987, IEEE Trans. Robotics Autom..

[35]  Fuzzy Logic in Control Systems : Fuzzy Logic , 2022 .

[36]  Chi-Cheng Jou,et al.  A fuzzy cerebellar model articulation controller , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[37]  Samad Hayati,et al.  Robot arm geometric link parameter estimation , 1983, The 22nd IEEE Conference on Decision and Control.

[38]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[39]  Morris Driels,et al.  Automated partial pose measurement system for manipulator calibration experiments , 1994, IEEE Trans. Robotics Autom..

[40]  Shaheen Ahmad,et al.  Analysis of robot drive train errors, their static effects, and their compensations , 1988, IEEE J. Robotics Autom..