Goal-oriented error estimation and adaptivity in MsFEM computations

We introduce a goal-oriented strategy for multiscale computations performed using the Multiscale Finite Element Method (MsFEM). In a previous work, we have shown how to use, in the MsFEM framework, the concept of Constitutive Relation Error (CRE) to obtain a guaranteed and fully computable a posteriori error estimate in the energy norm (as well as error indicators on various error sources). Here, the CRE concept is coupled with the solution of an adjoint problem to control the error and drive an adaptive procedure with respect to a given output of interest. Furthermore, a local and non-intrusive enrichment technique is proposed to enhance the accuracy of error bounds. The overall strategy, which is fully automatic and robust, enables to reach an appropriate trade-off between certified reliability and computational cost in the MsFEM context. The performances of the proposed method are investigated on several illustrative numerical test cases. In particular, the error estimation is observed to be very accurate, yielding a very efficient adaptive procedure.

[1]  Leszek Demkowicz,et al.  Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results , 2012 .

[2]  Ludovic Chamoin,et al.  Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems , 2012 .

[3]  Ludovic Chamoin,et al.  On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.

[4]  Rolf Rannacher,et al.  An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  Pierre Ladevèze,et al.  Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .

[7]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[8]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[9]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[10]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[11]  X. Blanc,et al.  A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects , 2012 .

[12]  Assyr Abdulle,et al.  A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .

[13]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[14]  Ludovic Chamoin,et al.  A posteriori error estimation and adaptive strategy for the control of MsFEM computations , 2017, Computer Methods in Applied Mechanics and Engineering.

[15]  Local profiles and elliptic problems at different scales with defects , 2015 .

[16]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[17]  Olivier Pironneau,et al.  Analysis of a Chimera method , 2001 .

[18]  P. Lions,et al.  Local Profiles for Elliptic Problems at Different Scales: Defects in, and Interfaces between Periodic Structures , 2015 .

[19]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[20]  Frédéric Legoll,et al.  An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..

[21]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[22]  Ben Schweizer,et al.  An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..

[23]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[24]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[25]  B. M. Fraeijs de Veubeke,et al.  Dual analysis for heat conduction problems by finite elements , 1972 .

[26]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[27]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[28]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[29]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[30]  O. Allix,et al.  Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .

[31]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[32]  Pierre Ladevèze,et al.  A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .

[33]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[34]  Olivier Pironneau,et al.  Domain decomposition methods for CAD , 1999 .

[35]  Matthias Maier,et al.  Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems , 2016, J. Num. Math..

[36]  Ivo Babuška,et al.  A posteriori error estimation for generalized finite element methods , 2006 .

[37]  Shun Zhang,et al.  High-Order Multiscale Finite Element Method for Elliptic Problems , 2014, Multiscale Model. Simul..

[38]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[39]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[40]  Ludovic Chamoin,et al.  New bounding techniques for goal‐oriented error estimation applied to linear problems , 2013, 1704.06688.

[41]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[42]  F. Legoll,et al.  Multiscale Finite Element approach for "weakly" random problems and related issues , 2011, 1111.1524.

[43]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[44]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[45]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[46]  Pierre Ladevèze,et al.  Calculation of strict error bounds for finite element approximations of non‐linear pointwise quantities of interest , 2010 .

[47]  J. N. Reddy,et al.  On dual-complementary variational principles in mathematical physics , 1974 .

[48]  Assyr Abdulle,et al.  A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .

[49]  Paul T. Bauman,et al.  An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations , 2009 .

[50]  P. Lions,et al.  On correctors for linear elliptic homogenization in the presence of local defects: The case of advection–diffusion , 2018, Journal de Mathématiques Pures et Appliquées.

[51]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[52]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[53]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[54]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[55]  F. Hartmann,et al.  Finite element recovery techniques for local quantities of linear problems using fundamental solutions , 2003 .

[56]  F. F. Ling,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .

[57]  Olivier Pironneau,et al.  Numerical zoom for advection diffusion problems with localized multiscales , 2011 .

[58]  Pierre Kerfriden,et al.  Scale selection in nonlinear fracture mechanics of heterogeneous materials , 2015 .

[59]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[60]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[61]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[62]  Wing Tat Leung,et al.  Goal-oriented adaptivity for GMsFEM , 2015, J. Comput. Appl. Math..

[63]  M. Larson,et al.  Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .

[64]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[65]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[66]  I. Babuska,et al.  The generalized finite element method , 2001 .

[67]  P. Lions,et al.  On correctors for linear elliptic homogenization in the presence of local defects , 2018, Communications in Partial Differential Equations.