暂无分享,去创建一个
[1] Leszek Demkowicz,et al. Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results , 2012 .
[2] Ludovic Chamoin,et al. Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems , 2012 .
[3] Ludovic Chamoin,et al. On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.
[4] Rolf Rannacher,et al. An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .
[5] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[6] Pierre Ladevèze,et al. Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .
[7] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[8] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[9] J. Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .
[10] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[11] X. Blanc,et al. A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects , 2012 .
[12] Assyr Abdulle,et al. A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method , 2013 .
[13] George Papanicolaou,et al. A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..
[14] Ludovic Chamoin,et al. A posteriori error estimation and adaptive strategy for the control of MsFEM computations , 2017, Computer Methods in Applied Mechanics and Engineering.
[15] Local profiles and elliptic problems at different scales with defects , 2015 .
[16] E Weinan,et al. Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .
[17] Olivier Pironneau,et al. Analysis of a Chimera method , 2001 .
[18] P. Lions,et al. Local Profiles for Elliptic Problems at Different Scales: Defects in, and Interfaces between Periodic Structures , 2015 .
[19] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[20] Frédéric Legoll,et al. An MsFEM Type Approach for Perforated Domains , 2013, Multiscale Model. Simul..
[21] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[22] Ben Schweizer,et al. An Adaptive Multiscale Finite Element Method , 2014, Multiscale Model. Simul..
[23] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .
[24] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[25] B. M. Fraeijs de Veubeke,et al. Dual analysis for heat conduction problems by finite elements , 1972 .
[26] T. Hou,et al. Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .
[27] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[28] Kumar Vemaganti,et al. Hierarchical modeling of heterogeneous solids , 2006 .
[29] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[30] O. Allix,et al. Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .
[31] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[32] Pierre Ladevèze,et al. A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .
[33] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[34] Olivier Pironneau,et al. Domain decomposition methods for CAD , 1999 .
[35] Matthias Maier,et al. Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems , 2016, J. Num. Math..
[36] Ivo Babuška,et al. A posteriori error estimation for generalized finite element methods , 2006 .
[37] Shun Zhang,et al. High-Order Multiscale Finite Element Method for Elliptic Problems , 2014, Multiscale Model. Simul..
[38] J. Tinsley Oden,et al. Estimation of modeling error in computational mechanics , 2002 .
[39] M. Larson,et al. Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .
[40] Ludovic Chamoin,et al. New bounding techniques for goal‐oriented error estimation applied to linear problems , 2013, 1704.06688.
[41] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[42] F. Legoll,et al. Multiscale Finite Element approach for "weakly" random problems and related issues , 2011, 1111.1524.
[43] Pierre Ladevèze,et al. Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .
[44] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[45] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .
[46] Pierre Ladevèze,et al. Calculation of strict error bounds for finite element approximations of non‐linear pointwise quantities of interest , 2010 .
[47] J. N. Reddy,et al. On dual-complementary variational principles in mathematical physics , 1974 .
[48] Assyr Abdulle,et al. A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .
[49] Paul T. Bauman,et al. An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations , 2009 .
[50] P. Lions,et al. On correctors for linear elliptic homogenization in the presence of local defects: The case of advection–diffusion , 2018, Journal de Mathématiques Pures et Appliquées.
[51] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[52] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[53] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[54] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[55] F. Hartmann,et al. Finite element recovery techniques for local quantities of linear problems using fundamental solutions , 2003 .
[56] F. F. Ling,et al. Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .
[57] Olivier Pironneau,et al. Numerical zoom for advection diffusion problems with localized multiscales , 2011 .
[58] Pierre Kerfriden,et al. Scale selection in nonlinear fracture mechanics of heterogeneous materials , 2015 .
[59] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[60] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[61] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[62] Wing Tat Leung,et al. Goal-oriented adaptivity for GMsFEM , 2015, J. Comput. Appl. Math..
[63] M. Larson,et al. Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .
[64] Thomas Y. Hou,et al. Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..
[65] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[66] I. Babuska,et al. The generalized finite element method , 2001 .
[67] P. Lions,et al. On correctors for linear elliptic homogenization in the presence of local defects , 2018, Communications in Partial Differential Equations.