PEM Fuel Cells: A Mathematical Overview

We present an overview of the mathematical issues that arise in the modeling of polymer electrolyte membrane fuel cells. These issues range from nanoscale modeling of network structures arising in pore formation within the polymer and the formation of nanostructured agglomerates within the catalyst layer, to macroscale models of multiphase flow and water management, degradation of catalyst layers and membrane, and development of stack level codes. The dominant themes are the development and analysis of multiscale models and their reduction to simplified forms that are implementable in stack-level computations.

[1]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[2]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[3]  Markku J. Lampinen,et al.  Analysis of Free Energy and Entropy Changes for Half‐Cell Reactions , 1993 .

[4]  S. Nemat-Nasser Micromechanics of actuation of ionic polymer-metal composites , 2002 .

[5]  J. Crank Free and moving boundary problems , 1984 .

[6]  Robert M. Darling,et al.  Mathematical Model of Platinum Movement in PEM Fuel Cells , 2005 .

[7]  John M Prausnitz,et al.  Water-Nafion equilibria. absence of Schroeder's paradox. , 2007, The journal of physical chemistry. B.

[8]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[9]  Shanhai Ge,et al.  Liquid Water Formation and Transport in the PEFC Anode , 2007 .

[10]  Ioannis G. Kevrekidis,et al.  The dynamic response of PEM fuel cells to changes in load , 2005 .

[11]  A. Weber,et al.  Macroscopic Modeling of Polymer-Electrolyte Membranes , 2007 .

[12]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[13]  M. Valentini,et al.  Analytical Pore Scale Modeling of the Reactive Regions of Polymer Electrolyte Fuel Cells , 2003 .

[14]  Michael Eikerling,et al.  Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells , 2004 .

[15]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[16]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[17]  T. Nguyen,et al.  An Along‐the‐Channel Model for Proton Exchange Membrane Fuel Cells , 1998 .

[18]  M. B. Cutlip An approximate model for mass transfer with reaction inporous gas diffusion electrodes , 1975 .

[19]  B. Wetton,et al.  PEM unit cell model considering additional reactions , 2006 .

[20]  Brian T. R. Wetton,et al.  A mixture formulation for numerical capturing of a two-phase/vapour interface in a porous medium , 2007, J. Comput. Phys..

[21]  N. Risebro,et al.  A fast marching method for reservoir simulation , 2000 .

[22]  Y. Shikhmurzaev Moving contact lines in liquid/liquid/solid systems , 1997, Journal of Fluid Mechanics.

[23]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[24]  Chao-Yang Wang,et al.  Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells , 2004 .

[25]  P. Ekdunge,et al.  Modelling the PEM fuel cell cathode , 1997 .

[26]  R. Borup Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation , 2007 .

[27]  Xinfu Chen,et al.  Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities , 2006, European Journal of Applied Mathematics.

[28]  K. Lee,et al.  Overview of the effects of rare-earth elements used as additive materials in molten carbonate fuel cell systems , 2006 .

[29]  T. Nguyen,et al.  Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells , 1998 .

[30]  Qingzhi Guo,et al.  A Steady-State Impedance Model for a PEMFC Cathode , 2004 .

[31]  Nikhil H. Jalani,et al.  Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity , 2005 .

[32]  Adam Z. Weber,et al.  Transport in Polymer-Electrolyte Membranes I. Physical Model , 2004 .

[33]  T. Jarvi,et al.  Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions , 2004 .

[34]  Stephen J. Paddison,et al.  Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes , 2003 .

[35]  Andrew C. Fowler,et al.  Mathematical Models in the Applied Sciences , 1997 .

[36]  Michael J. Ward,et al.  The analysis of a two-phase zone with condensation in a porous medium , 2003 .

[37]  S. Paddison,et al.  Structure and dielectric saturation of water in hydrated polymer electrolyte membranes: Inclusion of the internal field energy , 2004 .

[38]  Adam Z. Weber,et al.  Modeling Transport in Polymer‐Electrolyte Fuel Cells , 2004 .

[39]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[40]  Keith Promislow,et al.  The effects of water and microstructure on the performance of polymer electrolyte fuel cells , 2006 .

[41]  J. Newman,et al.  Modeling Two-Phase Behavior in PEFCs , 2004 .

[42]  Erik Middelman,et al.  Improved PEM fuel cell electrodes by controlled self-assembly , 2002 .

[43]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[44]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[45]  F. Kargı,et al.  Bio-hydrogen production from waste materials , 2006 .

[46]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[47]  David A. Dillard,et al.  Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes , 2005 .

[48]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[49]  Klaus Gärtner,et al.  Performance Modeling of a Direct Methanol Fuel Cell , 2003 .

[50]  Y. Qi,et al.  Mesoscale Simulation of Morphology in Hydrated Perfluorosulfonic Acid Membranes , 2005 .

[51]  B. Wetton,et al.  Water Management in PEM Fuel Cells , 2004 .

[52]  S. Paddison,et al.  The phenomena of dielectric saturation in the water domains of polymer electrolyte membranes , 2004 .

[53]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[54]  Keith Promislow,et al.  Electrical coupling in proton exchange membrane fuel cell stacks , 2005 .

[55]  S. Litster,et al.  Active Water Management for PEM Fuel Cells , 2007 .

[56]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[57]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[58]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[59]  N. Djilali,et al.  Determination of transport parameters for multiphase flow in porous gas diffusion electrodes using a capillary network model , 2007 .

[60]  Arden L. Buck,et al.  New Equations for Computing Vapor Pressure and Enhancement Factor , 1981 .

[61]  Alexander Wokaun,et al.  In-Plane Effects in Large-Scale PEMFCs Model Formulation and Validation , 2006 .

[62]  Philip N. Ross,et al.  Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review , 2001 .

[63]  Keith Promislow,et al.  Spatial and temporal mapping of water content across Nafion membranes under wetting and drying conditions. , 2008, Journal of magnetic resonance.

[64]  J. Stumper,et al.  In Situ Determination of MEA Resistance and Electrode Diffusivity of a Fuel Cell , 2005 .

[65]  Adam Z. Weber,et al.  Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model , 2004 .

[66]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[67]  A. A. Kornyshev,et al.  Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells , 1998 .

[68]  Keith Promislow,et al.  Two-Phase Unit Cell Model for Slow Transients in Polymer Electrolyte Membrane Fuel Cells , 2008 .

[69]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[70]  M. B. Cutlip AN APPROXIMATE MODEL FOR MASS TRANSFER WITH REACTION IN POROUS GAS DIFFUSION ELECTRODES , 1975 .

[71]  Michael Vynnycky,et al.  Analysis of a Two-Phase Non-Isothermal Model for a PEFC , 2005 .

[72]  Gérard Gebel,et al.  Fibrillar structure of Nafion: Matching fourier and real space studies of corresponding films and solutions , 2004 .

[73]  Mohsen Shahinpoor,et al.  Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles , 2004 .

[74]  Sandip Mazumder,et al.  Rigorous 3-D mathematical modeling of PEM fuel cells. II. Model predictions with liquid water transport , 2003 .

[75]  Jean-Luc Guermond,et al.  Nonlinear corrections to Darcy's law at low Reynolds numbers , 1997, Journal of Fluid Mechanics.

[76]  Mohamed Mohamedi,et al.  Binderless carbon nanotube/carbon fibre composites for electrochemical micropower sources. , 2007, Nanotechnology.

[77]  John M. Stockie,et al.  A finite volume method for multicomponent gas transport in a porous fuel cell electrode , 2003 .

[78]  Keith Promislow,et al.  Reduced dimensional computational models of polymer electrolyte membrane fuel cell stacks , 2007, J. Comput. Phys..

[79]  Ned Djilali,et al.  Mathematical modelling of ambient air-breathing fuel cells for portable devices , 2007 .

[80]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[81]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[82]  Joseph D. Fehribach,et al.  Diffusion-reaction-conduction processes in porous electrodes: the electrolyte wedge problem , 2001, European Journal of Applied Mathematics.

[83]  Robert M. Darling,et al.  Model of Carbon Corrosion in PEM Fuel Cells , 2006 .

[84]  Keith Promislow,et al.  Electrical coupling in proton exchange membrane fuel cell stacks : mathematical and computational modelling , 2006 .

[85]  Keith Promislow,et al.  A simple, mathematical model of thermal coupling in fuel cell stacks , 2005 .

[86]  Rodney L. Borup,et al.  Durability of PEFCs at High Humidity Conditions , 2005 .

[87]  W. Tong,et al.  Strain Accumulation in Polymer Electrolyte Membrane and Membrane Electrode Assembly Materials During a Single Hydration/Dehydration Cycle , 2007 .

[88]  Trung Van Nguyen,et al.  Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell , 2003 .

[89]  Jack Dongarra,et al.  Introduction to the HPCChallenge Benchmark Suite , 2004 .

[90]  B. Wetton,et al.  Flow distribution in proton exchange membrane fuel cell stacks , 2006 .

[91]  Christoph Beckermann,et al.  A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media—I. Formulation , 1993 .

[92]  S. Paddison,et al.  Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. , 2005, The journal of physical chemistry. A.

[93]  Jiujun Zhang,et al.  A review of polymer electrolyte membranes for direct methanol fuel cells , 2007 .

[94]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[95]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies , 2006 .

[96]  Ned Djilali,et al.  An assessment of alkaline fuel cell technology , 2002 .

[97]  S. Kakaç,et al.  A review of numerical modeling of solid oxide fuel cells , 2007 .

[98]  S. Paddison,et al.  Effects of dielectric saturation and ionic screening on the proton self-diffusion coefficients in perfluorosulfonic acid membranes. , 2005, The Journal of chemical physics.

[99]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[100]  John M. Stockie,et al.  A sharp interface reduction for multiphase transport in a porous fuel cell electrode , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[101]  Suresh G. Advani,et al.  Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell , 2007 .

[102]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[103]  M. C. Leverett,et al.  Capillary Behavior in Porous Solids , 1941 .

[104]  Kornyshe Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[105]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[106]  M. Chial,et al.  in simple , 2003 .

[107]  Chao-Yang Wang,et al.  Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells , 2005 .

[108]  A. A. Kulikovsky Two models of a PEFC: semi‐analytical vs numerical , 2005 .

[109]  Gholamreza Karimi,et al.  Performance analysis and optimization of PEM fuel cell stacks using flow network approach , 2005 .

[110]  K. Promislow,et al.  Analysis of a cathode catalyst layer model for a polymer electrolyte fuel cell , 2006 .

[111]  S. Paddison,et al.  On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes. , 2006, Physical chemistry chemical physics : PCCP.

[112]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[113]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[114]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[115]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[116]  M. Blunt,et al.  Network extraction from sandstone and carbonate pore space images , 2007 .

[117]  A. Weber,et al.  Understanding porous water-transport plates in polymer-electrolyte fuel cells , 2007 .

[118]  A. Kannan,et al.  Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells , 2007 .

[119]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[120]  Keith Promislow,et al.  The Impact of Membrane Constraint on PEM Fuel Cell Water Management , 2007 .

[121]  Chaoyang Wang,et al.  Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach , 2007 .

[122]  John Newman,et al.  A theoretical study of membrane constraint in polymer-electrolyte fuel cells , 2004 .

[123]  D. Brett,et al.  Numerical Modeling of a Single Channel Polymer Electrolyte Fuel Cell , 2007 .