Indentation creep of an Fe-based bulk metallic glass

[1]  Mingwei Chen,et al.  Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses , 2008, Proceedings of the National Academy of Sciences.

[2]  W. H. Li,et al.  The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation , 2008 .

[3]  B. Wei,et al.  The characterization of plastic deformation in Ce-based bulk metallic glasses , 2007 .

[4]  Ping Huang,et al.  Strain rate sensitivity of nanoindentation creep in polycrystalline Al film on Silicon substrate , 2007 .

[5]  Xin Zhang,et al.  Nanoindentation creep of plasma-enhanced chemical vapor deposited silicon oxide thin films , 2007 .

[6]  A. L. Greer,et al.  Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation , 2006 .

[7]  J. Lapin Creep behaviour of a cast TiAl-based alloy for industrial applications , 2006 .

[8]  Taihua Zhang,et al.  Indentation Creep Behavior in Ce-Based Bulk Metallic Glasses at Room Temperature , 2005 .

[9]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[10]  J. Eckert,et al.  Plastic deformation and mechanical softening of Pd_40Cu_30Ni_10P_20 bulk metallic glass during nanoindentation , 2005 .

[11]  G. Wang,et al.  Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy , 2005 .

[12]  T. Nieh,et al.  New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling , 2004 .

[13]  C. Schuh,et al.  The Mohr–Coulomb criterion from unit shear processes in metallic glass , 2004 .

[14]  H. Bei,et al.  Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. , 2004, Physical review letters.

[15]  A. Ngan,et al.  Size effects of nanoindentation creep , 2004 .

[16]  J. Eckert,et al.  Fracture mechanisms in bulk metallic glassy materials. , 2003, Physical review letters.

[17]  Christopher A. Schuh,et al.  A nanoindentation study of serrated flow in bulk metallic glasses , 2003 .

[18]  A. Chong,et al.  Model and experiments on strain gradient hardening in metallic glass , 2001 .

[19]  Yong Li,et al.  A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites , 1999 .

[20]  Warren C. Oliver,et al.  Indentation power-law creep of high-purity indium , 1999 .

[21]  J. Sietsma,et al.  Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation , 1998 .

[22]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[23]  A. F. Bower,et al.  Indentation of a power law creeping solid , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  R. M. Hooper,et al.  The mechanisms of indentation creep , 1991 .

[25]  A. Argon,et al.  Development of visco-plastic deformation in metallic glasses , 1983 .

[26]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[27]  D. Turnbull,et al.  ON THE FREE-VOLUME MODEL OF THE LIQUID-GLASS TRANSITION. , 1970 .

[28]  G. J. Fan,et al.  Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation , 2007 .

[29]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[30]  A. Argon Plastic deformation in metallic glasses , 1979 .