The chemical and electronic structure of the interface between aluminum and polythiophene semiconductors

We have investigated the chemical nature and the electronic structure of the interface between a low work function metal, aluminum, and a conjugated polymer semiconductor, polythiophene. We have studied the initial stages of the interface formation by depositing the metal onto the surface of a polymer film. Charge transfer processes between the metal and the polymer are analyzed using core‐level x‐ray photoelectron spectroscopy (XPS); the evolution upon metallization of the valence electronic levels directly related to the polymer electronic structure is followed with ultraviolet photoelectron spectroscopy (UPS). With these techniques, we investigate the deposition of aluminum on two polythiophene systems (i) the alkyl‐substituted poly‐3‐octylthiophene and (ii) the α‐sexithiophene oligomer. The experimental data are compared to the results of a recent quantum chemical study on model systems consisting of thiophene oligomers (up to sexithiophene) interacting with a few Al atoms. The interaction of polythio...

[1]  P. Bodö,et al.  Pthalimide on copper: A model system to address certain site-specific interactions at the polyimide-copper interface , 1988 .

[2]  G. Gustafsson,et al.  Melt processable polymer electronics , 1991 .

[3]  S. Ikeda,et al.  The adsorption of SO2 on iron surfaces studied by x-ray photoelectron spectroscopy , 1978 .

[4]  S. A. Flodström,et al.  Photoemission study of clean and oxygen-covered aluminum and magnesium , 1976 .

[5]  R. E. Rundle,et al.  Electron Deficient Compounds. VII. The Structure of the Trimethylaluminum Dimer , 1953 .

[6]  R. Friend,et al.  New semiconductor device physics in polymer diodes and transistors , 1988, Nature.

[7]  J. Brédas,et al.  Metal/conjugated polymer interfaces: A theoretical investigation of the interaction between aluminum and trans‐polyacetylene oligomers , 1993 .

[8]  K. Mittal Metallized Plastics 2 , 1991 .

[9]  D. Fichou,et al.  An all‐organic "soft" thin film transistor with very high carrier mobility , 1990 .

[10]  G. Wertheim,et al.  Electronic structure of lithium graphite , 1980 .

[11]  I. Lindau,et al.  Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103 , 1985 .

[12]  R. Baetzold,et al.  The application of photoemission, molecular orbital calculations, and molecular mechanics to the silver–poly(p‐phenylene sulfide) interface , 1991 .

[13]  H. Koezuka,et al.  X‐ray photoemission spectroscopy investigation of Schottky barrier formation in a copolymer of pyrrole and N‐methylpyrrole , 1984 .

[14]  W. R. Salaneck,et al.  The poly‐3‐hexylthiophene/NOPF6 system: A photoelectron spectroscopy study of electronic structural changes induced by the charge transfer in the solid state , 1990 .

[15]  G. Rubloff,et al.  Chemical bonding and reaction at metal/polymer interfaces , 1985 .

[16]  R. H. Williams,et al.  Valence band structures and core-electron energy levels in the monochalcogenides of gallium. Photoelectron spectroscopic study , 1972 .

[17]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[18]  R. Silbey,et al.  Valence effective Hamiltonian study of the electronic structure of poly(p‐phenylene) and poly(p‐phenylene sulfide) , 1982 .

[19]  K. Schaumburg,et al.  A Gas Phase Electron Diffraction Investigation of the Molecular Structures of Trimethylaluminium Monomer and Dimer. , 1971 .

[20]  J. Brédas,et al.  Theoretical investigations of the aluminum/polythiophene interface , 1992 .

[21]  Jean-Luc Brédas,et al.  Conjugated polymers : the novel science and technology of highly conducting and nonlinear optically active materials , 1991 .

[22]  W. R. Salaneck,et al.  X-ray photoelectron spectroscopy of boron fluoride doped polypyrrole , 1983 .

[23]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[24]  G. Pfister,et al.  Electronic properties of polymers , 1982 .

[25]  H. R. Thomas,et al.  Application of ESCA to polymer chemistry. XVI. Electron mean free paths as a function of kinetic energy in polymeric films determined by means of ESCA , 1977 .

[26]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[27]  W. R. Salaneck Intermolecular Relaxation Energies in Anthracene , 1978 .

[28]  Leonard J. Brillson,et al.  The structure and properties of metal-semiconductor interfaces , 1982 .

[29]  W. R. Salaneck,et al.  The electronic structure of α,ω-diphenyltetradecaheptaene, a model molecule for polyacetylene, as studied by photoelectron spectroscopy , 1992 .

[30]  D. Langer,et al.  Electronic Core Levels of theIIB−VIACompounds , 1971 .

[31]  W. R. Salaneck,et al.  Thermochromism in poly(3‐hexylthiophene) in the solid state: A spectroscopic study of temperature‐dependent conformational defects , 1988 .

[32]  A. Epstein,et al.  Inelastic electron scattering lengths and charge transfer in tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ) films , 1975 .