Fatigue of Yttria‐Stabilized Zirconia: I, Fatigue Damage, Fracture Origins, and Lifetime Prediction

~Uniaxial tension-compression fatigue behavior of 3-mol%yttria-stabilized tetragonal zirconia polycrystals was investigated. Hysteresis in the stress-plastic strain curve featured cumulative plastic strain and weakened elastic stiffness. Fracture statistics in terms of cycle-to-failure depends strongly on the maximum stress and less on the stress amplitude. Preexisting processing flaws were identified as the fracture origins in all cases. We suggest that microcracking is the dominant mechanism of fatigue damage, that nucleation of fatigue crack is usually not necessary, and that fatigue lifetime is primarily controlled by crack propagation, which is most sensitive to the maximum stress. [Key words: fatigue, fracture, zirconia, cracks, stress.]

[1]  Y. Murakami,et al.  Stress intensity factors of an elliptical crack or a semi-elliptical crack subject to tension , 1974 .

[2]  J. Blendell,et al.  Measurement of Stress Due to Thermal Expansion Anisotropy in Al2O3 , 1982 .

[3]  K. Bowman,et al.  Reversible Transformation Plasticity in Uniaxial Tensioncompression Cycling of Mg-PSZ , 1986 .

[4]  S. Suresh,et al.  Theory and experiments of fracture in cyclic compression: Single phase ceramics, transforming ceramics and ceramic composites , 1988 .

[5]  R. Dauskardt,et al.  Cyclic Fatigue-Crack Propagation in Ceramics: Long and Small Crack Behavior , 1989 .

[6]  I. Chen,et al.  Transformation Plasticity and Transformation Toughening in Mg-PSZ and Ce-TZP , 1986 .

[7]  R. A. Page,et al.  Deformation mechanisms in yttria-stabilized zirconia , 1988 .

[8]  M. Reece,et al.  Cyclic Fatigue Crack Propagation in Alumina under Direct Tension—Compression Loading , 1989 .

[9]  B. W. Christ,et al.  Alignment Problems in the Tensile Test , 1976 .

[10]  R. Ritchie,et al.  Cyclic Fatigue‐Crack Propagation in Magnesia‐Partially‐Stabilized Zirconia Ceramics , 1990 .

[11]  Kanji Ohya,et al.  The Relationship between Cyclic Fatigue Properties and Microstructures of Sintered Silicon Nitride Ceramics , 1990 .

[12]  I. Chen,et al.  Stress-Biased Anisotropic Microcracking in Zirconia Polycrystals , 1990 .

[13]  I-Wei Chen,et al.  Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis , 1988 .

[14]  V. Zelizko,et al.  Influence of surface preparation on the rotating flexural fatigue of Mg-PSZ , 1988 .

[15]  R. Dauskardt,et al.  Fatigue Crack Propagation in Transformation‐Toughened Zirconia Ceramic , 1987 .

[16]  I-Wei Chen,et al.  Implications of Transformation Plasticity in ZrO2-Containing Ceramics: I, Shear and Dilatation Effects , 1986 .

[17]  W. J. Knapp,et al.  Fatigue Fracture of an Alumina Ceramic at Several Temperatures , 1974 .

[18]  R. Kossowsky Cyclic Fatigue of Hot‐Pressed Si3N4 , 1973 .

[19]  S. Suresh,et al.  Crack growth in transforming ceramics under cyclic tensile loads , 1989 .

[20]  A. Ueno,et al.  Crack propagation behavior of sintered silicon nitride under cyclic loads of high stress ratio and high frequency , 1991 .

[21]  I. Chen,et al.  Fatigue of Yttria-Stabilized Zirconia: II, Crack Propagation, Fatigue Striations, and Short-Crack Behavior , 1991 .

[22]  D. Shetty,et al.  Fatigue Crack Propagation in Ceria‐Partially‐Stabilized Zirconia (Ce‐TZP)‐Alumina Composites , 1990 .

[23]  T. Sōma,et al.  Fatigue of Ceramics (Part 3) , 1989 .

[24]  K. Tsukuma,et al.  Mechanical Property and Microstructure of TZP and TZP/Al 2 O 3 Composites , 1986 .

[25]  W. Carter,et al.  Transient subcritical crack-growth behavior in transformation-toughened ceramics , 1990 .

[26]  D. Hasselman,et al.  Static and Cyclic Fatigue Behavior of a Polycrystalline Alumina , 1972 .