A dynamic maximum principle for the optimization of recursive utilities under constraints

This paper examines the continuous-time portfolio-consumption problem of an agent with a recursive utility in the presence of nonlinear constraints on the wealth. Using backward stochastic differential equations, we state a dynamic maximum principle which generalizes the characterization of optimal policies obtained by Duffie and Skiadas [J. Math Econ. 23, 107–131 (1994)] in the case of a linear wealth. From this property, we derive a characterization of optimal wealth and utility processes as the unique solution of a forward-backward system. Existence of an optimal policy is also established via a penalization method.

[1]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[2]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[3]  Mark D. Schroder,et al.  Optimal Consumption and Portfolio Selection with Stochastic Differential Utility , 1999 .

[4]  Jakša Cvitanić,et al.  Optimal consumption choices for a 'large' investor , 1998 .

[5]  W. Fleming,et al.  Hedging in incomplete markets with HARA utility , 1997 .

[6]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[7]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[8]  D. Cuoco Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income , 1997 .

[9]  S. Peng,et al.  Solution of forward-backward stochastic differential equations , 1995 .

[10]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[11]  J. Yong,et al.  Solving forward-backward stochastic differential equations explicitly — a four step scheme , 1994 .

[12]  D. Duffie,et al.  Continuous-time security pricing: A utility gradient approach , 1994 .

[13]  Larry G. Epstein,et al.  Intertemporal Asset Pricing Under Knightian Uncertainty , 1994 .

[14]  Jakša Cvitanić,et al.  Hedging Contingent Claims with Constrained Portfolios , 1993 .

[15]  D. Duffie,et al.  Optimal Investment With Undiversifiable Income Risk , 1993 .

[16]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[17]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[18]  S. Peng A Generalized dynamic programming principle and hamilton-jacobi-bellman equation , 1992 .

[19]  Thaleia Zariphopoulou,et al.  Consumption-investment models with constraints , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[21]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[22]  Steven E. Shreve,et al.  A Duality Method for Optimal Consumption and Investment Under Short- Selling Prohibition. I. General Market Coefficients , 1992 .

[23]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[24]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[25]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[26]  Larry G. Epstein,et al.  Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework , 1989 .

[27]  D. Duffie,et al.  Security markets : stochastic models , 1990 .

[28]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[29]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[30]  G. Constantinides Capital Market Equilibrium with Transaction Costs , 1986, Journal of Political Economy.

[31]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[32]  J. Aubin,et al.  L'analyse non linéaire et ses motivations économiques , 1984 .

[33]  Suresh P. Sethi,et al.  Optimal Consumption and Investment Policies Allowing Consumption Constraints and Bankruptcy , 1983, Math. Oper. Res..

[34]  George M. Constantinides,et al.  Intertemporal Asset Pricing with Heterogeneous Consumers and without Demand Aggregation , 1982 .

[35]  U. Haussmann General necessary conditions for optimal control of stochastic systems , 1976 .

[36]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[37]  D. Luenberger Optimization by Vector Space Methods , 1968 .