BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices

We propose Bi-Conjugate Residual (BiCR) variants of the hybrid Bi-Conjugate Gradient (BiCG) methods (referred to as the hybrid BiCR variants) for solving linear systems with nonsymmetric coefficient matrices. The recurrence formulas used to update an approximation and a residual vector are the same as those used in the corresponding hybrid BiCG method, but the recurrence coefficients are different; they are determined so as to compute the coefficients of the residual polynomial of BiCR. From our experience it appears that the hybrid BiCR variants often converge faster than their BiCG counterpart. Numerical experiments show that our proposed hybrid BiCR variants are more effective and less affected by rounding errors. The factor in the loss of convergence speed is analyzed to clarify the difference of the convergence between our proposed hybrid BiCR variants and the hybrid BiCG methods.

[1]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[2]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[3]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.

[4]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[7]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[8]  H. V. D. Vorst,et al.  Generalized conjugate gradient squared , 1996 .

[9]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[10]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[11]  Gene H. Golub,et al.  Closer to the solutions: iterative linear solvers , 1997 .

[12]  E. Stiefel Kernel polynomial in linear algebra and their numerical applications, in : Further contributions to the determination of eigenvalues , 1958 .

[13]  David A. H. Jacobs,et al.  The State of the Art in Numerical Analysis. , 1978 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  M. Sugihara,et al.  An extension of the conjugate residual method to nonsymmetric linear systems , 2009 .

[16]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[17]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[18]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..