Computing integral points on hyperelliptic curves using quadratic Chabauty
暂无分享,去创建一个
[1] Jennifer S. Balakrishnan,et al. Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.
[2] Noam D. Elkies,et al. Trinomials ax and ax with Galois Groups of Order 168 and 8·168 , 2002, ANTS.
[3] N. Smart. Integral points on elliptic curves , 1998 .
[4] Edward F. Schaefer,et al. Twists of X(7) and primitive solutions to x^2+y^3=z^7 , 2005, math/0508174.
[5] Michael Stoll,et al. Two-cover descent on hyperelliptic curves , 2008, Math. Comput..
[6] S. David. Minorations de formes linéaires de logarithmes elliptiques , 1995 .
[7] E. V. Flynn. The Hasse principle and the Brauer-Manin obstruction for curves , 2004 .
[8] H. G. Zimmer,et al. Computing all S-integral points on elliptic curves , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] p-adic Arakelov theory , 2003, math/0301029.
[10] Michael Stoll,et al. Deciding Existence of Rational Points on Curves: An Experiment , 2006, Exp. Math..
[11] Nigel P. Smart,et al. S-integral points on elliptic curves , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] J. S. Muller,et al. Canonical heights on genus-2 Jacobians , 2016, 1603.00640.
[13] Bjorn Poonen. Heuristics for the Brauer–Manin Obstruction for Curves , 2006, Exp. Math..
[14] Bjorn Poonen,et al. Finiteness results for modular curves of genus at least 2 , 2002 .
[15] B. Poonen. THE METHOD OF CHABAUTY AND COLEMAN WILLIAM MCCALLUM AND , 2017 .
[16] N. Smart. The Algorithmic Resolution of Diophantine Equations , 1999 .
[17] E. V. Flynn,et al. Covering collections and a challenge problem of Serre , 2001 .
[18] Joseph H. Silverman,et al. Amicable Pairs and Aliquot Cycles for Elliptic Curves , 2009, Exp. Math..
[19] Robert W. Bradshaw,et al. Explicit Coleman Integration for Hyperelliptic Curves , 2010, ANTS.
[20] M. Stoll. An explicit theory of heights for hyperelliptic Jacobians of genus three , 2017, 1701.00772.
[21] N. Bruin,et al. Chabauty methods using elliptic curves , 2003 .
[22] Stephen C. Pohlig,et al. An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance , 2022, IEEE Trans. Inf. Theory.
[23] Martin E. Hellman,et al. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[24] E. Victor Flynn,et al. Coverings of Curves of Genus 2 , 2000, ANTS.
[25] M. Stoll,et al. The Mordell-Weil sieve : proving non-existence of rational points on curves , 2009, 0906.1934.
[26] Jennifer S. Balakrishnan. Iterated Coleman integration for hyperelliptic curves , 2013 .
[27] Benedict H. Gross,et al. Local Heights on Curves , 1986 .
[28] Michael Stoll,et al. Implementing 2-descent for Jacobians of hyperelliptic curves , 2001 .
[29] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[30] Minhyong Kim. The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel , 2005 .
[31] S. Lang. Introduction to Arakelov Theory , 1988 .
[32] Victor Scharaschkin,et al. Local -global problems and the Brauer -Manin obstruction. , 1999 .
[33] Jennifer S. Balakrishnan,et al. A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves , 2012 .
[34] M. Mignotte,et al. Integral points on hyperelliptic curves , 2008, 0801.4459.
[35] Nigel P. Smart,et al. Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .
[36] Y. Takane,et al. Generalized Inverse Matrices , 2011 .
[37] Michael Stoll,et al. On the height constant for curves of genus two, II , 1999 .
[38] Minhyong Kim. Massey products for elliptic curves of rank 1 , 2009, 0901.4668.
[39] N. Tzanakis,et al. Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms , 1994 .
[40] Jennifer S. Balakrishnan,et al. Coleman-Gross height pairings and the $p$-adic sigma function , 2012, 1201.6016.
[41] M. Stoll,et al. CANONICAL HEIGHTS ON GENUS TWO JACOBIANS , 2016 .
[42] Attila Pethö,et al. Computing integral points on elliptic curves , 1994 .
[43] Jennifer S. Balakrishnan,et al. A p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties , 2012, Math. Comput..
[44] Appendix and erratum to “Massey products for elliptic curves of rank 1” , 2011 .