Computing integral points on hyperelliptic curves using quadratic Chabauty

We give a method for the computation of integral points on a hyperelliptic curve of odd degree over the rationals whose genus equals the Mordell-Weil rank of its Jacobian. Our approach consists of a combination of the p-adic approximation techniques introduced in previous work with the Mordell-Weil sieve.

[1]  Jennifer S. Balakrishnan,et al.  Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.

[2]  Noam D. Elkies,et al.  Trinomials ax and ax with Galois Groups of Order 168 and 8·168 , 2002, ANTS.

[3]  N. Smart Integral points on elliptic curves , 1998 .

[4]  Edward F. Schaefer,et al.  Twists of X(7) and primitive solutions to x^2+y^3=z^7 , 2005, math/0508174.

[5]  Michael Stoll,et al.  Two-cover descent on hyperelliptic curves , 2008, Math. Comput..

[6]  S. David Minorations de formes linéaires de logarithmes elliptiques , 1995 .

[7]  E. V. Flynn The Hasse principle and the Brauer-Manin obstruction for curves , 2004 .

[8]  H. G. Zimmer,et al.  Computing all S-integral points on elliptic curves , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  p-adic Arakelov theory , 2003, math/0301029.

[10]  Michael Stoll,et al.  Deciding Existence of Rational Points on Curves: An Experiment , 2006, Exp. Math..

[11]  Nigel P. Smart,et al.  S-integral points on elliptic curves , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  J. S. Muller,et al.  Canonical heights on genus-2 Jacobians , 2016, 1603.00640.

[13]  Bjorn Poonen Heuristics for the Brauer–Manin Obstruction for Curves , 2006, Exp. Math..

[14]  Bjorn Poonen,et al.  Finiteness results for modular curves of genus at least 2 , 2002 .

[15]  B. Poonen THE METHOD OF CHABAUTY AND COLEMAN WILLIAM MCCALLUM AND , 2017 .

[16]  N. Smart The Algorithmic Resolution of Diophantine Equations , 1999 .

[17]  E. V. Flynn,et al.  Covering collections and a challenge problem of Serre , 2001 .

[18]  Joseph H. Silverman,et al.  Amicable Pairs and Aliquot Cycles for Elliptic Curves , 2009, Exp. Math..

[19]  Robert W. Bradshaw,et al.  Explicit Coleman Integration for Hyperelliptic Curves , 2010, ANTS.

[20]  M. Stoll An explicit theory of heights for hyperelliptic Jacobians of genus three , 2017, 1701.00772.

[21]  N. Bruin,et al.  Chabauty methods using elliptic curves , 2003 .

[22]  Stephen C. Pohlig,et al.  An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance , 2022, IEEE Trans. Inf. Theory.

[23]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[24]  E. Victor Flynn,et al.  Coverings of Curves of Genus 2 , 2000, ANTS.

[25]  M. Stoll,et al.  The Mordell-Weil sieve : proving non-existence of rational points on curves , 2009, 0906.1934.

[26]  Jennifer S. Balakrishnan Iterated Coleman integration for hyperelliptic curves , 2013 .

[27]  Benedict H. Gross,et al.  Local Heights on Curves , 1986 .

[28]  Michael Stoll,et al.  Implementing 2-descent for Jacobians of hyperelliptic curves , 2001 .

[29]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[30]  Minhyong Kim The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel , 2005 .

[31]  S. Lang Introduction to Arakelov Theory , 1988 .

[32]  Victor Scharaschkin,et al.  Local -global problems and the Brauer -Manin obstruction. , 1999 .

[33]  Jennifer S. Balakrishnan,et al.  A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves , 2012 .

[34]  M. Mignotte,et al.  Integral points on hyperelliptic curves , 2008, 0801.4459.

[35]  Nigel P. Smart,et al.  Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .

[36]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[37]  Michael Stoll,et al.  On the height constant for curves of genus two, II , 1999 .

[38]  Minhyong Kim Massey products for elliptic curves of rank 1 , 2009, 0901.4668.

[39]  N. Tzanakis,et al.  Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms , 1994 .

[40]  Jennifer S. Balakrishnan,et al.  Coleman-Gross height pairings and the $p$-adic sigma function , 2012, 1201.6016.

[41]  M. Stoll,et al.  CANONICAL HEIGHTS ON GENUS TWO JACOBIANS , 2016 .

[42]  Attila Pethö,et al.  Computing integral points on elliptic curves , 1994 .

[43]  Jennifer S. Balakrishnan,et al.  A p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties , 2012, Math. Comput..

[44]  Appendix and erratum to “Massey products for elliptic curves of rank 1” , 2011 .