Mechanisms for magnetic field reversals

We present a review of the different models that have been proposed to explain reversals of the magnetic field generated by a turbulent flow of an electrically conducting fluid (fluid dynamos). We then describe a simple mechanism that explains several features observed in palaeomagnetic records of the Earth’s magnetic field, in numerical simulations and in a recent dynamo experiment. A similar model can also be used to understand reversals of large-scale flows that often develop on a turbulent background.

[1]  B. Dubrulle,et al.  Magnetic field reversals in an experimental turbulent dynamo , 2007, physics/0701076.

[2]  B. Clement Dependence of the duration of geomagnetic polarity reversals on site latitude , 2004, Nature.

[3]  J. Duistermaat,et al.  Geomagnetic reversals and the stochastic exit problem , 2004 .

[4]  G. Glatzmaier,et al.  An examination of simulated geomagnetic reversals from a palaeomagnetic perspective , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  C. Jones,et al.  A convection driven geodynamo reversal model , 1999 .

[6]  S. Fauve,et al.  Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow , 2008 .

[7]  L. Meynadier,et al.  Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.

[8]  P. Holmes,et al.  Random perturbations of heteroclinic attractors , 1990 .

[9]  Johannes Wicht,et al.  A detailed study of the polarity reversal mechanism in a numerical dynamo model , 2004 .

[10]  P. Nozières Reversals of the earth's magnetic field: An attempt at a relaxation model , 1978 .

[11]  Jonathan M. Aurnou,et al.  The magnetic structure of convection-driven numerical dynamos , 2008 .

[12]  Paul H. Roberts,et al.  Kinematic dynamo models , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  M. McElhinny,et al.  Reversals of the Earth's magnetic field and temporal variations of the dynamo families , 1991 .

[14]  Emmanuel Dormy,et al.  Simple mechanism for reversals of earth's magnetic field. , 2008, Physical review letters.

[15]  E. Levy Kinematic reversal schemes for the geomagnetic dipole. , 1972 .

[16]  P. L. Mcfadden,et al.  Fundamental transitions in the geodynamo as suggested by paleomagnetic data , 1995 .

[17]  V. Kirk,et al.  Chaotically modulated stellar dynamos , 1995 .

[18]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[19]  E. Knobloch,et al.  A new model of the solar cycle , 1996 .

[20]  M. Proctor,et al.  A Heteroclinic model of geodynamo reversals and excursions , 2001 .

[21]  Graeme R. Sarson,et al.  Reversal models from dynamo calculations , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  D. Armbruster,et al.  Structurally Stable Heteroclinic Cycles and the Dynamo Dynamics , 2001 .

[23]  E. Knobloch,et al.  Modulation and symmetry changes in stellar dynamos , 1998 .

[24]  Akira Kageyama,et al.  Repeated and Sudden Reversals of the Dipole Field Generated by a Spherical Dynamo Action , 2002, Science.

[25]  F. H. Busse,et al.  Parameter dependences of convection-driven dynamos in rotating spherical fluid shells , 2006, Geophysical & Astrophysical Fluid Dynamics.

[26]  P. Holmes,et al.  Structurally stable heteroclinic cycles , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  J. Sommeria Experimental study of the two-dimensional inverse energy cascade in a square box , 1986, Journal of Fluid Mechanics.

[28]  Global bifurcation to traveling waves in axisymmetric convection. , 1988, Physical review letters.

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model. , 2004, Physical review letters.

[31]  Simulation study of the symmetry-breaking instability and the dipole field reversal in a rotating spherical shell dynamo , 2007 .

[32]  E. Parker The occasional reversal of the geomagnetic field , 1969 .

[33]  E. Wood The Baba and the Comrade: Gender and Politics in Revolutionary Russia , 1997 .

[34]  H. K. Mo Att,et al.  Magnetic field generation in electrically conducting fluids , 1978 .

[35]  E. Dormy,et al.  Numerical models of the geodynamo and observational constraints , 2000 .

[36]  L. Sorriso-Valvo,et al.  Oscillation or rotation: a comparison of two simple reversal models , 2007 .

[37]  Jun Zhang,et al.  Self-induced cyclic reorganization of free bodies through thermal convection. , 2008, Physical review letters.

[38]  A. Giesecke,et al.  Oscillating α 2‐dynamos and the reversal phenomenon of the global geodynamo , 2005, astro-ph/0509286.

[39]  L. Howard,et al.  Large-scale flow generation in turbulent convection. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Schmitt,et al.  Magnetic field reversals and secular variation in a bistable geodynamo model , 2001 .

[41]  A. Wilmot-Smith,et al.  Low-order stellar dynamo models , 2005 .

[42]  J. Pinton,et al.  Chaotic dynamos generated by a turbulent flow of liquid sodium. , 2008, Physical review letters.

[43]  T. Rikitake,et al.  Oscillations of a system of disk dynamos , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Paul H. Roberts,et al.  Geodynamo theory and simulations , 2000 .

[45]  R. Hide Cosmical magnetic fields , 1978, Nature.

[46]  Carsten Kutzner,et al.  From stable dipolar towards reversing numerical dynamos , 2002 .

[47]  Dynamics of target patterns in low-Prandtl-number convection , 2003, Journal of Fluid Mechanics.

[48]  B. Brunhes Recherches sur la direction d'aimantation des roches volcaniques , 2022 .

[49]  K. Robbins,et al.  A new approach to subcritical instability and turbulent transitions in a simple dynamo , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[50]  Dynamics of polar reversals in spherical dynamos , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.