Magnetotransport in overdoped La$_{2-x}$Sr$_x$CuO$_4$: Effect of anisotropic scattering

We revisit the Hall effect and magnetoresistivity by incorporating the anisotropic scattering caused by apical oxygen vacancies in overdoped La-based cuprates 1 . The theoretical calculations within the Fermi liquid picture agree well with a handful of anomalous magneto-transport data, better than the results using an isotropic scattering rate alone. In particular, we obtain the upturn of Hall coefficient R H with decreasing temperature T 2,3 , the initial drop of R H in magnetic field B in all overdoped regimes 4,5 , the linear resistivity ρ versus B near the van Hove doping level 6,7 , the temperature dependence of the magnetoresistivity ratio 6–9 , and the violation of Kohler’s law 8,9 . These results suggest that many of the anomalous transport behaviors in overdoped La 2 − x Sr x CuO 4 could actually be understood within the Fermi liquid picture.

[1]  X. Kong,et al.  Effect of realistic out-of-plane dopant potentials on the superfluid density of overdoped cuprates , 2022, Physical Review B.

[2]  L. Chen,et al.  Electrons with Planckian scattering obey standard orbital motion in a magnetic field , 2022, Nature Physics.

[3]  I. Gilmutdinov,et al.  Compartmentalizing the cuprate strange metal , 2022, 2203.04867.

[4]  Jun Xu,et al.  Anisotropic Scattering Caused by Apical Oxygen Vacancies in Thin Films of Overdoped High-Temperature Cuprate Superconductors. , 2021, Physical review letters.

[5]  Congjun Wu,et al.  Magnetotransport in overdoped La2−xSrxCuO4 : Fermi liquid approach , 2021, Physical Review B.

[6]  T. Kondo,et al.  Incoherent transport across the strange-metal regime of overdoped cuprates , 2020, Nature.

[7]  D. Graf,et al.  Linear-in temperature resistivity from an isotropic Planckian scattering rate , 2020, Nature.

[8]  D. Rickel,et al.  Observation of cyclotron resonance and measurement of the hole mass in optimally doped La2−xSrxCuO4 , 2020, Physical Review B.

[9]  A. Bollinger,et al.  What is really extraordinary in cuprate superconductors? , 2019, Physica C: Superconductivity and its Applications.

[10]  J. Zaanen Planckian dissipation, minimal viscosity and the transport in cuprate strange metals , 2018, SciPost Physics.

[11]  N. P. Armitage,et al.  Locating the Missing Superconducting Electrons in the Overdoped Cuprates La_{2-x}Sr_{x}CuO_{4}. , 2018, Physical review letters.

[12]  S. Hayden,et al.  Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates. , 2018, Physical review letters.

[13]  J. Betts,et al.  Scale-invariant magnetoresistance in a cuprate superconductor , 2017, Science.

[14]  M. Minola,et al.  Selective formation of apical oxygen vacancies in La 2 − x Sr x CuO 4 , 2017, 1909.06140.

[15]  L. Taillefer,et al.  Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor Nd-LSCO , 2017 .

[16]  Akash V. Maharaj,et al.  The Hall number across a van Hove singularity , 2016, 1611.03875.

[17]  A. Bollinger,et al.  Dependence of the critical temperature in overdoped copper oxides on superfluid density , 2016, Nature.

[18]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[19]  S. Hayden,et al.  Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La2−xSrxCuO4 , 2013, Nature Communications.

[20]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[21]  J. Betts,et al.  Quantum phase transition in the magnetic-field-induced normal state of optimum-doped high-Tc cuprate superconductors at low temperatures. , 2009, Physical review letters.

[22]  Y. Sassa,et al.  Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature La2-xSrxCuO4 superconductors , 2007, 0708.2782.

[23]  Z. Hussain,et al.  Low-energy electronic structure of the high-Tc cuprates La2−xSrxCuO4 studied by angle-resolved photoemission spectroscopy , 2006, cond-mat/0610759.

[24]  L. Balicas,et al.  Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor , 2006, cond-mat/0609763.

[25]  Z. Hussain,et al.  Systematic doping evolution of the underlying Fermi surface of La2-xSrxCuO4 , 2005, cond-mat/0510608.

[26]  M. Randeria,et al.  Momentum anisotropy of the scattering rate in cuprate superconductors , 2004, cond-mat/0410680.

[27]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[28]  V. Moshchalkov,et al.  High field magnetoresistivity of epitaxial La2-xSrxCuO4 thin films , 2003, cond-mat/0308227.

[29]  C. Varma,et al.  Effective Lorentz Force due to Small-Angle Impurity Scattering: Magnetotransport in High-Tc Superconductors , 2000, cond-mat/0011020.

[30]  C. Varma,et al.  What angle-resolved photoemission experiments tell about the microscopic theory for high-temperature superconductors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Kobayashi,et al.  In-plane and out-of-plane magnetoresistance in La2-xSrxCuO4 single crystals. , 1996, Physical review. B, Condensed matter.

[32]  W. F. Peck,et al.  Scaling of the temperature dependent Hall effect in La2-xSrxCuO4. , 1994, Physical review letters.

[33]  Hirschfeld,et al.  Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. , 1993, Physical review. B, Condensed matter.

[34]  N. Ong,et al.  Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. , 1991, Physical review. B, Condensed matter.

[35]  G. Fair Theory of galvanomagnetic effects in metals , 1970 .

[36]  H. Budd Chamber's Solution of the Boltzmann Equation , 1962 .

[37]  Lev P. Gor'kov,et al.  CONTRIBUTION TO THE THEORY OF SUPERCONDUCTING ALLOYS WITH PARAMAGNETIC IMPURITIES , 1960 .

[38]  J. M. Luttinger FERMI SURFACE AND SOME SIMPLE EQUILIBRIUM PROPERTIES OF A SYSTEM OF INTERACTING FERMIONS , 1960 .

[39]  R G Chambers,et al.  The Kinetic Formulation of Conduction Problems , 1952 .