Convergence rates for adaptive approximation of ordinary differential equations
暂无分享,去创建一个
Raúl Tempone | Georgios E. Zouraris | Kyoung-Sook Moon | Anders Szepessy | R. Tempone | G. E. Zouraris | A. Szepessy | Kyoung-Sook Moon
[1] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[2] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[3] R. Tempone,et al. Adaptive weak approximation of stochastic differential equations , 2001 .
[4] N. S. Bakhvalov,et al. On the optimality of linear methods for operator approximation in convex classes of functions , 1971 .
[5] Erich Novak,et al. On the Power of Adaption , 1996, J. Complex..
[6] Michael Warner,et al. Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems , 1999, SIAM J. Sci. Comput..
[7] Feng Gao,et al. Probabilistic analysis of numerical integration algorithms , 1991, J. Complex..
[8] Toshio Kawai,et al. Optimal Time Step Control for the Numerical Solution of Ordinary Differential Equations , 1996 .
[9] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[10] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[11] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[12] Joseph F. Traub,et al. Complexity and information , 1999, Lezioni Lincee.
[13] Raúl Tempone,et al. A variational principle for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.
[14] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[15] Andrew M. Stuart,et al. Convergence results for the MATLAB ode23 routine , 1998 .
[16] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[17] R. Lamba. Convergence Results for the MATLAB ode 23 , 1998 .
[18] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[19] Claes Johnson. Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .
[20] Gustaf Söderlind,et al. Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.
[21] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[22] Nicholas J. Higham,et al. Matlab guide , 2000 .
[23] Andrew M. Stuart. Probabilistic and deterministic convergence proofs for software for initial value problems , 2004, Numerical Algorithms.
[24] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[25] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[26] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[27] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[28] Ivo Babuška,et al. Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .
[29] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[30] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[31] Raul Tempone,et al. Hyperbolic differential equations and adaptive numerics , 2001 .
[32] Kyoung-Sook Moon. Convergence rates of adaptive algorithms for deterministic and stochastic differential equations , 2001 .
[33] Donald Estep,et al. THE POINTWISE COMPUTABILITY OF THE LORENZ SYSTEM , 1998 .
[34] Arthur G. Werschulz,et al. Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.
[35] James F. Blowey,et al. Theory and Numerics of Differential Equations , 2001 .
[36] Claes Johnson,et al. Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .
[37] Anders Logg,et al. Multi-Adaptive Galerkin Methods for ODEs I , 2002, SIAM J. Sci. Comput..