Convergence rates for adaptive approximation of ordinary differential equations

SummaryThis paper constructs an adaptive algorithm for ordinary differential equations and analyzes its asymptotic behavior as the error tolerance parameter tends to zero. An adaptive algorithm, based on the error indicators and successive subdivision of time steps, is proven to stop with the optimal number, N, of steps up to a problem independent factor defined in the algorithm. A version of the algorithm with decreasing tolerance also stops with the total number of steps, including all refinement levels, bounded by $\mathcal O(N)$. The alternative version with constant tolerance stops with $\mathcal O(N\ {\rm log}\ N)$ total steps. The global error is bounded by the tolerance parameter asymptotically as the tolerance tends to zero. For a p-th order accurate method the optimal number of adaptive steps is proportional to the p-th root of the ${{L^{{\frac{{1}}{{p+1}}}}}}$ quasi-norm of the error density, while the number of uniform steps, with the same error, is proportional to the p-th root of the larger L1-norm of the error density.

[1]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[2]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[3]  R. Tempone,et al.  Adaptive weak approximation of stochastic differential equations , 2001 .

[4]  N. S. Bakhvalov,et al.  On the optimality of linear methods for operator approximation in convex classes of functions , 1971 .

[5]  Erich Novak,et al.  On the Power of Adaption , 1996, J. Complex..

[6]  Michael Warner,et al.  Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems , 1999, SIAM J. Sci. Comput..

[7]  Feng Gao,et al.  Probabilistic analysis of numerical integration algorithms , 1991, J. Complex..

[8]  Toshio Kawai,et al.  Optimal Time Step Control for the Numerical Solution of Ordinary Differential Equations , 1996 .

[9]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[10]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[11]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[12]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[13]  Raúl Tempone,et al.  A variational principle for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.

[14]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[15]  Andrew M. Stuart,et al.  Convergence results for the MATLAB ode23 routine , 1998 .

[16]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[17]  R. Lamba Convergence Results for the MATLAB ode 23 , 1998 .

[18]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[19]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[20]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[21]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[22]  Nicholas J. Higham,et al.  Matlab guide , 2000 .

[23]  Andrew M. Stuart Probabilistic and deterministic convergence proofs for software for initial value problems , 2004, Numerical Algorithms.

[24]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[25]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[28]  Ivo Babuška,et al.  Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .

[29]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[30]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[31]  Raul Tempone,et al.  Hyperbolic differential equations and adaptive numerics , 2001 .

[32]  Kyoung-Sook Moon Convergence rates of adaptive algorithms for deterministic and stochastic differential equations , 2001 .

[33]  Donald Estep,et al.  THE POINTWISE COMPUTABILITY OF THE LORENZ SYSTEM , 1998 .

[34]  Arthur G. Werschulz,et al.  Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.

[35]  James F. Blowey,et al.  Theory and Numerics of Differential Equations , 2001 .

[36]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[37]  Anders Logg,et al.  Multi-Adaptive Galerkin Methods for ODEs I , 2002, SIAM J. Sci. Comput..