Optimal approximation of multivariate periodic Sobolev functions in the sup-norm

Using tools from the theory of operator ideals and s-numbers, we develop a general approach to transfer estimates for $L_2$ -approximation of Sobolev functions into estimates for $L_\infty$-approximation, with precise control of all involved constants. As an illustration, we derive some results for periodic isotropic Sobolev spaces $H^s ({\mathbb T}^d)$ and Sobolev spaces of dominating mixed smoothness $H^s_{\rm mix} ({\mathbb T}^d)$, always equipped with natural norms. Some results for isotropic as well as dominating mixed Besov spaces are also obtained.

[1]  Jan Vybíral,et al.  Widths of embeddings in function spaces , 2008, J. Complex..

[2]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[3]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[4]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[5]  A. Romanyuk Linear Widths of the Besov Classes of Periodic Functions of Many Variables. II , 2001 .

[6]  Winfried Sickel,et al.  Approximation numbers of Sobolev embeddings - Sharp constants and tractability , 2014, J. Complex..

[7]  Yasuo Okuyama,et al.  Absolute convergence of orthogonal series , 1984 .

[8]  Tino Ullrich,et al.  N-Widths and ε-Dimensions for High-Dimensional Approximations , 2013, Found. Comput. Math..

[9]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[10]  J. Kahane Séries de Fourier absolument convergentes , 1970 .

[11]  Holder Inequalities and Sharp Embeddings in Function Spaces of B q and F Type , 2013 .

[12]  A. Pietsch,et al.  Weyl numbers and eigenvalues of operators in Banach spaces , 1980 .

[13]  Колмогоровские и тригонометрические поперечники классов Бесова $B^r_{p,\theta}$ периодических функций многих переменных@@@Kolmogorov and trigonometric widths of the Besov classes $B^r_{p,\theta}$ of multivariate periodic functions , 2006 .

[14]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[15]  H. Yserentant Regularity and Approximability of Electronic Wave Functions , 2010 .

[16]  M. Fowler,et al.  Function Spaces , 2022 .

[17]  E. Novak,et al.  Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .

[18]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[19]  A. Romanyuk,et al.  Kolmogorov and trigonometric widths of the Besov classes $ B^r_{p,\theta}$ of multivariate periodic functions , 2006 .

[20]  C. V. Hutton On the approximation numbers of an operator and its adjoint , 1974 .

[21]  V N Temlyakov,et al.  Approximation of Periodic Functions of Several Variables by Trigonometric Polynomials, and Widths of Some Classes of Functions , 1986 .

[22]  Xianfu Wang Volumes of Generalized Unit Balls , 2005 .

[23]  Vladimir N. Temlyakov,et al.  On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..

[24]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[25]  A. S. Romanyuk Linear Widths of the Besov Classes of Periodic Functions of Many Variables. I , 2001 .

[26]  J. Peetre New thoughts on Besov spaces , 1976 .

[27]  Hans Triebel,et al.  Fourier analysis and function spaces , 1977 .

[28]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[29]  W. Sickel,et al.  Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence , 2013, 1312.6386.

[30]  H. Triebel Theory Of Function Spaces , 1983 .

[31]  Konstantin Yu. Osipenko,et al.  Ismagilov Type Theorems for Linear, Gel?fand and Bernstein n-Widths , 1995, J. Complex..

[32]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[33]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[34]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[35]  Ahmed E. Radwan,et al.  δβ-I APPROXIMATION SPACES , 2017 .