Optimal approximation of multivariate periodic Sobolev functions in the sup-norm
暂无分享,去创建一个
[1] Jan Vybíral,et al. Widths of embeddings in function spaces , 2008, J. Complex..
[2] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[3] J. Diestel,et al. Absolutely Summing Operators , 1995 .
[4] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[5] A. Romanyuk. Linear Widths of the Besov Classes of Periodic Functions of Many Variables. II , 2001 .
[6] Winfried Sickel,et al. Approximation numbers of Sobolev embeddings - Sharp constants and tractability , 2014, J. Complex..
[7] Yasuo Okuyama,et al. Absolute convergence of orthogonal series , 1984 .
[8] Tino Ullrich,et al. N-Widths and ε-Dimensions for High-Dimensional Approximations , 2013, Found. Comput. Math..
[9] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[10] J. Kahane. Séries de Fourier absolument convergentes , 1970 .
[11] Holder Inequalities and Sharp Embeddings in Function Spaces of B q and F Type , 2013 .
[12] A. Pietsch,et al. Weyl numbers and eigenvalues of operators in Banach spaces , 1980 .
[14] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[15] H. Yserentant. Regularity and Approximability of Electronic Wave Functions , 2010 .
[16] M. Fowler,et al. Function Spaces , 2022 .
[17] E. Novak,et al. Tractability of Multivariate Problems, Volume III: Standard Information for Operators. , 2012 .
[18] A. Pietsch. Eigenvalues and S-Numbers , 1987 .
[19] A. Romanyuk,et al. Kolmogorov and trigonometric widths of the Besov classes $ B^r_{p,\theta}$ of multivariate periodic functions , 2006 .
[20] C. V. Hutton. On the approximation numbers of an operator and its adjoint , 1974 .
[21] V N Temlyakov,et al. Approximation of Periodic Functions of Several Variables by Trigonometric Polynomials, and Widths of Some Classes of Functions , 1986 .
[22] Xianfu Wang. Volumes of Generalized Unit Balls , 2005 .
[23] Vladimir N. Temlyakov,et al. On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..
[24] H. Triebel,et al. Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .
[25] A. S. Romanyuk. Linear Widths of the Besov Classes of Periodic Functions of Many Variables. I , 2001 .
[26] J. Peetre. New thoughts on Besov spaces , 1976 .
[27] Hans Triebel,et al. Fourier analysis and function spaces , 1977 .
[28] Jöran Bergh,et al. General Properties of Interpolation Spaces , 1976 .
[29] W. Sickel,et al. Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence , 2013, 1312.6386.
[30] H. Triebel. Theory Of Function Spaces , 1983 .
[31] Konstantin Yu. Osipenko,et al. Ismagilov Type Theorems for Linear, Gel?fand and Bernstein n-Widths , 1995, J. Complex..
[32] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[33] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[34] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[35] Ahmed E. Radwan,et al. δβ-I APPROXIMATION SPACES , 2017 .