On Neural Networks’ Ability to Approximate Geometrical Variation Propagation in Assembly
暂无分享,去创建一个
Claire Lartigue | François Thiébaut | Loïc Andolfatto | Marc Douilly | C. Lartigue | L. Andolfatto | F. Thiebaut | M. Douilly
[1] Wayne W. Cai,et al. Digital Panel Assembly Methodologies and Applications for Compliant Sheet Components , 2006 .
[2] Russell R. Barton,et al. Chapter 18 Metamodel-Based Simulation Optimization , 2006, Simulation.
[3] Emmanuel Vazquez,et al. Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .
[4] Jack P. C. Kleijnen,et al. Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..
[5] A. Barron. Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.
[6] Byeng D. Youn,et al. Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction , 2007 .
[7] Frank Mantwill,et al. Efficient Consideration of Contact in Compliant Assembly Variation Analysis , 2009 .
[8] S. Jack Hu,et al. A parametric study of joint performance in sheet metal assembly , 1997 .
[9] Lars Lindkvist,et al. Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling , 2007 .
[10] Serge Samper,et al. Form Defects Tolerancing by Natural Modes Analysis , 2007, J. Comput. Inf. Sci. Eng..
[11] Wenzhen Huang,et al. Mode-based Decomposition of Part Form Error by Discrete-Cosine-Transform with Implementation to Assembly and Stamping System with Compliant Parts , 2002 .