Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem

[1]  J. Long,et al.  The development of apical embryonic pattern in Arabidopsis. , 1998, Development.

[2]  K. Kiêu,et al.  Cellular Parameters of the Shoot Apical Meristem in Arabidopsis , 1998, Plant Cell.

[3]  T. Laux,et al.  Cell fate regulation in the shoot meristem. , 1998, Seminars in cell & developmental biology.

[4]  G. Jürgens,et al.  Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis , 1998, The EMBO journal.

[5]  Claudia van den Berg,et al.  Short-range control of cell differentiation in the Arabidopsis root meristem , 1997, Nature.

[6]  T. J. Cooke,et al.  Fundamental Concepts in the Embryogenesis of Dicotyledons: A Morphological Interpretation of Embryo Mutants. , 1997, The Plant cell.

[7]  E. Meyerowitz,et al.  A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Heiko Schoof,et al.  Maintaining the shoot meristem — the role of CLAVATA1 , 1997 .

[9]  S. Clark,et al.  Organ Formation at the Vegetative Shoot Meristem. , 1997, The Plant cell.

[10]  T. Laux,et al.  Embryogenesis: A New Start in Life. , 1997, The Plant cell.

[11]  Robert W. Williams,et al.  The CLAVATA1 Gene Encodes a Putative Receptor Kinase That Controls Shoot and Floral Meristem Size in Arabidopsis , 1997, Cell.

[12]  E. Meyerowitz,et al.  Genetic Control of Cell Division Patterns in Developing Plants , 1997, Cell.

[13]  J. Levin,et al.  The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. , 1996, The Plant journal : for cell and molecular biology.

[14]  J. Brown,et al.  Arabidopsis intron mutations and pre-mRNA splicing. , 1996, The Plant journal : for cell and molecular biology.

[15]  C. Mello,et al.  The PIE-1 protein and germline specification in C. elegans embryos , 1996, Nature.

[16]  P. Benfey,et al.  The SCARECROW Gene Regulates an Asymmetric Cell Division That Is Essential for Generating the Radial Organization of the Arabidopsis Root , 1996, Cell.

[17]  J. Levin,et al.  The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. , 1996, Development.

[18]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[19]  W. Lukowitz,et al.  Cytokinesis in the Arabidopsis Embryo Involves the Syntaxin-Related KNOLLE Gene Product , 1996, Cell.

[20]  June I. Medford,et al.  A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis , 1996, Nature.

[21]  G. Jürgens,et al.  The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. , 1996, Development.

[22]  D. Le Paslier,et al.  The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. , 1995, The Plant journal : for cell and molecular biology.

[23]  S. Hake,et al.  Homeobox genes in the functioning of plant meristems. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  J. Messing,et al.  The formation of mRNA 3'-ends in plants. , 1995, The Plant journal : for cell and molecular biology.

[25]  R. F. Smith,et al.  BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. , 1995, Genome research.

[26]  M. Heinlein,et al.  One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. , 1995, The Plant journal : for cell and molecular biology.

[27]  Yaoguang Liu,et al.  Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. , 1995, Genomics.

[28]  J. Ohnishi,et al.  Arabidopsis , 2008, Springer New York.

[29]  S. Hake,et al.  Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. , 1994, The Plant cell.

[30]  J Kimble,et al.  lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. , 1994, Development.

[31]  E. Grill,et al.  A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. , 1994, Science.

[32]  Sudhir Kumar,et al.  MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers , 1994, Comput. Appl. Biosci..

[33]  T. Kornberg,et al.  Understanding the homeodomain. , 1993, The Journal of biological chemistry.

[34]  R. Poethig,et al.  Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant , 1993 .

[35]  E. Meyerowitz,et al.  CLAVATA1, a regulator of meristem and flower development in Arabidopsis. , 1993, Development.

[36]  N. Raikhel,et al.  Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. , 1992, The Plant cell.

[37]  D. Weigel,et al.  LEAFY controls floral meristem identity in Arabidopsis , 1992, Cell.

[38]  J. Ecker,et al.  Genetic and physical linkage of the Arabidopsis genome: methods for anchoring yeast artificial chromosomes. , 1992 .

[39]  A. Laughon,et al.  DNA binding specificity of homeodomains. , 1991, Biochemistry.

[40]  S. Mansfield,et al.  Early embryogenesis in Arabidopsis thaliana. II. The developing embryo , 1991 .

[41]  J. Ecker PFGE and YAC analysis of the Arabidopsis genome , 1990 .

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  M. Billeter,et al.  The structure of the homeodomain and its functional implications. , 1990, Trends in genetics : TIG.

[44]  M. Ptashne How eukaryotic transcriptional activators work , 1988, Nature.

[45]  M. Van Montagu,et al.  Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Michael Gribskov,et al.  PEPPLOT, a protein secondary structure analysis program for the UWGCG sequence analysis software package , 1986, Nucleic Acids Res..

[47]  E. Klekowski,et al.  IMPERMANENT INITIALS OF THE SHOOT APEX AND DIPLONTIC SELECTION IN A JUNIPER CHIMERA , 1985 .

[48]  T. Steeves,et al.  Patterns in plant development: Subject index , 1972 .

[49]  H. Dermen,et al.  DETERMINATION OF NUMBER AND MITOTIC ACTIVITY OF SHOOT APICAL INITIAL CELLS BY ANALYSIS OF MERICLINAL CHIMERAS , 1970 .

[50]  I. Newman Pattern in the meristems of vascular plants: III. Pursuing the patterns in the apical meristem where no cell is a permanent cell* , 1965 .

[51]  A. Spurr HISTOGENESIS AND ORGANIZATION OF THE EMBRYO IN PINUS STROBUS L. , 1949 .

[52]  A. Blakeslee,et al.  Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras , 1940 .