A Modified Nonlinear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem

This paper proposes a modified nonlinear inexact Uzawa (MNIU) algorithm for solving the stabilized saddle point problem, by introducing a variable overrelaxation parameter to speed up convergence. MNIU is an inner-outer iteration method with variable inner accuracy. We give a detailed error analysis for the convergence of MNIU, based upon a newly defined error norm which helps to handle variable inner accuracy for the Uzawa method. We also simply formulate the optimal overrelaxation parameter. Sufficient conditions are given for the convergence of MNIU. We show that MNIU converges in a relatively large range for the variable inner accuracy setting. For constant inner accuracy $\delta$, MNIU is convergent when $\delta<1$, too. Compared with the original nonlinear inexact Uzawa algorithm (NIU) that converges only for constant accuracy and $\delta<1/3$, this is a significant improvement. We also show a practical approach for estimating the optimal overrelaxation parameter for numerical computation. Numerical experiments of MNIU are given and compared with other methods. These results confirm the significant improvements of MNIU.

[1]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[2]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[3]  Jun Zou,et al.  Nonlinear Inexact Uzawa Algorithms for Linear and Nonlinear Saddle-point Problems , 2006, SIAM J. Optim..

[4]  Xiao-Liang Cheng,et al.  On the Nonlinear Inexact Uzawa Algorithm for Saddle-Point Problems , 2000, SIAM J. Numer. Anal..

[5]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[6]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  M SIAMJ. AN ITERATIVE METHOD WITH VARIABLE RELAXATION PARAMETERS FOR SADDLE-POINT PROBLEMS , 2001 .

[9]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[10]  Zhi-Hao Cao Fast Uzawa algorithms for solving non-symmetric stabilized saddle point problems , 2004, Numer. Linear Algebra Appl..

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  Yiqin Lin,et al.  A new nonlinear Uzawa algorithm for generalized saddle point problems , 2006, Appl. Math. Comput..

[15]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[16]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[17]  Jia Liu,et al.  An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..

[18]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  Zhi-Hao Cao Fast uzawa algorithm for generalized saddle point problems , 2003 .

[21]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[22]  Jun Zou,et al.  An Efficient Linear Solver for Nonlinear Parameter Identification Problems , 2000, SIAM J. Sci. Comput..

[23]  Constantin Bacuta,et al.  A Unified Approach for Uzawa Algorithms , 2006, SIAM J. Numer. Anal..

[24]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[25]  Xiao-Liang Cheng,et al.  Some remarks on the nonlinear inexact Uzawa algorithm for saddle point problem , 2005, Int. J. Comput. Math..