High-resolution digital profiling of the epigenome

The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.

[1]  Petra C. Schwalie,et al.  CAST-ChIP maps cell-type-specific chromatin states in the Drosophila central nervous system. , 2013, Cell reports.

[2]  K. Zhao,et al.  Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 , 2013 .

[3]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[4]  D. Spector,et al.  Nuclear neighborhoods and gene expression. , 2009, Current opinion in genetics & development.

[5]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[6]  Dirk Schübeler,et al.  Tackling the epigenome: challenges and opportunities for collaboration , 2010, Nature Biotechnology.

[7]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[8]  H. Jones Plant Gene Transfer and Expression Protocols , 2013 .

[9]  William Stafford Noble,et al.  Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays , 2006, Nature Methods.

[10]  Cizhong Jiang,et al.  Nucleosome positioning and gene regulation: advances through genomics , 2009, Nature Reviews Genetics.

[11]  Steven Henikoff,et al.  Histone variants — ancient wrap artists of the epigenome , 2010, Nature Reviews Molecular Cell Biology.

[12]  J. Zlatanova,et al.  Nucleosome assembly depends on the torsion in the DNA molecule: a magnetic tweezers study. , 2009, Biophysical journal.

[13]  S. Henikoff,et al.  High-resolution mapping defines the cooperative architecture of Polycomb response elements , 2014, Genome research.

[14]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[15]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[16]  Ty C. Voss,et al.  Dynamic regulation of transcriptional states by chromatin and transcription factors , 2013, Nature Reviews Genetics.

[17]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[18]  G. Crabtree,et al.  ATP-dependent chromatin remodeling: genetics, genomics and mechanisms , 2011, Cell Research.

[19]  Nir Friedman,et al.  Dynamics of Replication-Independent Histone Turnover in Budding Yeast , 2007, Science.

[20]  Jennifer Kirkham,et al.  Cell separation: Terminology and practical considerations , 2012, Journal of tissue engineering.

[21]  F. Robert,et al.  Kin28 regulates the transient association of Mediator with core promoters , 2014, Nature Structural &Molecular Biology.

[22]  Jason S Carroll,et al.  Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties , 2013, Genome Biology.

[23]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[24]  Howard Y. Chang,et al.  Active chromatin and noncoding RNAs: an intimate relationship. , 2012, Current opinion in genetics & development.

[25]  Myong-Hee Sung,et al.  Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. , 2011, Molecular cell.

[26]  Guillaume J. Filion,et al.  A network model of the molecular organization of chromatin in Drosophila. , 2013, Molecular cell.

[27]  Yuchun Guo,et al.  High Resolution Genome Wide Binding Event Finding and Motif Discovery Reveals Transcription Factor Spatial Binding Constraints , 2012, PLoS Comput. Biol..

[28]  Nicholas A. Kent,et al.  Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing , 2010, Nucleic acids research.

[29]  S. Henikoff,et al.  A simple method for gene expression and chromatin profiling of individual cell types within a tissue. , 2010, Developmental cell.

[30]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[31]  Modesto Orozco,et al.  Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast , 2011, BMC Genomics.

[32]  A. Pombo,et al.  Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division , 2005, EMBO reports.

[33]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[34]  M. Groudine,et al.  Chromosomal subunits in active genes have an altered conformation. , 1976, Science.

[35]  B. Pugh,et al.  Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers , 2012, Cell.

[36]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[37]  S. Henikoff,et al.  Tripartite organization of centromeric chromatin in budding yeast , 2011, Proceedings of the National Academy of Sciences.

[38]  Gos Micklem,et al.  Supporting Online Material Materials and Methods Figs. S1 to S50 Tables S1 to S18 References Identification of Functional Elements and Regulatory Circuits by Drosophila Modencode , 2022 .

[39]  B. Wold,et al.  Large-Scale Quality Analysis of Published ChIP-seq Data , 2013, G3: Genes, Genomes, Genetics.

[40]  K. Hansen,et al.  Biases in Illumina transcriptome sequencing caused by random hexamer priming , 2010, Nucleic acids research.

[41]  M. Eisen,et al.  Impact of Chromatin Structures on DNA Processing for Genomic Analyses , 2009, PloS one.

[42]  R. Reeves,et al.  Genomic transcriptional activity and the structure of chromatin , 1976, Nature.

[43]  F. Ramírez,et al.  The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. , 2013, Cell reports.

[44]  Raymond K. Auerbach,et al.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project , 2010, Science.

[45]  F. Holstege,et al.  Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome , 2009, Nature Structural &Molecular Biology.

[46]  Kairong Cui,et al.  H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions in the human genome , 2009, Nature Genetics.

[47]  J. Julian Blow,et al.  Live-Cell Imaging Reveals Replication of Individual Replicons in Eukaryotic Replication Factories , 2006, Cell.

[48]  Steven Henikoff,et al.  ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies , 2013, Epigenetics & Chromatin.

[49]  S. Henikoff,et al.  The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo , 2014, eLife.

[50]  S Curran,et al.  Laser capture microscopy , 2000, Molecular pathology : MP.

[51]  Philip R. Gafken,et al.  Dynamic changes in histone acetylation regulate origins of DNA replication , 2010, Nature Structural &Molecular Biology.

[52]  J. Stamatoyannopoulos What does our genome encode? , 2012, Genome research.

[53]  L. Grøntved,et al.  Rapid genome-scale mapping of chromatin accessibility in tissue , 2012, Epigenetics & Chromatin.

[54]  E. Birney,et al.  High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. , 2011, Genome research.

[55]  Zachary D. Smith,et al.  DNA methylation: roles in mammalian development , 2013, Nature Reviews Genetics.

[56]  Adil Jamai,et al.  Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. , 2007, Molecular cell.

[57]  Keqin Zhang,et al.  Detecting DNA-binding of proteins in vivo by UV-crosslinking and immunoprecipitation. , 2004, Biochemical and biophysical research communications.

[58]  Jeff Vierstra,et al.  Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH , 2013, Nature Methods.

[59]  Kristin R Brogaard,et al.  A base pair resolution map of nucleosome positions in yeast , 2012, Nature.

[60]  Leighton J. Core,et al.  Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing , 2013, Science.

[61]  M. Kubista,et al.  Properties of the reverse transcription reaction in mRNA quantification. , 2004, Clinical chemistry.

[62]  Steven Henikoff,et al.  The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1 , 2014, eLife.

[63]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[64]  Jie Wang,et al.  Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium , 2012, Nucleic Acids Res..

[65]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[66]  Steven Henikoff,et al.  Nucleosome destabilization in the epigenetic regulation of gene expression , 2008, Nature Reviews Genetics.

[67]  Jorja G. Henikoff,et al.  H2A.Z nucleosomes enriched over active genes are homotypic , 2010, Nature Structural &Molecular Biology.

[68]  L. Mularoni,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo , 2010 .

[69]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[70]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[71]  S. Henikoff,et al.  Transcription-generated torsional stress destabilizes nucleosomes , 2013, Nature Structural &Molecular Biology.

[72]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[73]  R. Landgraf,et al.  Drosophila engrailed‐1, 10‐phenanthroline chimeras as probes of homeodomain‐DNA complexes , 1995, Protein science : a publication of the Protein Society.

[74]  S. Henikoff,et al.  Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide , 2011 .

[75]  J. Joung,et al.  Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions , 2013, Nature Biotechnology.

[76]  James Allan,et al.  Micrococcal Nuclease Does Not Substantially Bias Nucleosome Mapping , 2012, Journal of molecular biology.

[77]  Victor V Lobanenkov,et al.  A genome-wide map of CTCF multivalency redefines the CTCF code. , 2013, Cell reports.

[78]  Christopher M. Weber,et al.  Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. , 2014, Molecular cell.

[79]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[80]  Andrew C. Adey,et al.  Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition , 2010, Genome Biology.

[81]  William Stafford Noble,et al.  Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts , 2014, Genome research.

[82]  S. Henikoff,et al.  Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. , 2012, Genome research.

[83]  S. Henikoff,et al.  Genome-scale profiling of histone H3.3 replacement patterns , 2005, Nature Genetics.

[84]  K. Struhl,et al.  Where Does Mediator Bind In Vivo? , 2009, PloS one.

[85]  Tatsuo Fukagawa,et al.  An auxin-based degron system for the rapid depletion of proteins in nonplant cells , 2009, Nature Methods.

[86]  J. Pérez-Ortín,et al.  A method for genome-wide analysis of DNA helical tension by means of psoralen–DNA photobinding , 2010, Nucleic acids research.

[87]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[88]  S. Henikoff,et al.  Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones , 2010, Science.

[89]  S. Henikoff,et al.  Doxorubicin Enhances Nucleosome Turnover around Promoters , 2013, Current Biology.

[90]  T. Cai,et al.  H3.3-H4 Tetramer Splitting Events Feature Cell-Type Specific Enhancers , 2013, PLoS genetics.

[91]  Ola Spjuth,et al.  Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data , 2013, GigaScience.

[92]  Nicole Rusk,et al.  CRISPRs and epigenome editing , 2013, Nature Methods.

[93]  Jie Zhang,et al.  Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data , 2013, PLoS Comput. Biol..

[94]  T. Wolfsberg,et al.  DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays , 2006, Nature Methods.

[95]  M. Laskowski,et al.  Mechanism of action of micrococcal nuclease on deoxyribonucleic acid. , 1962, The Journal of biological chemistry.

[96]  James B. Brown,et al.  DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[97]  S. Henikoff,et al.  Regulation of nucleosome dynamics by histone modifications , 2013, Nature Structural &Molecular Biology.

[98]  J. Weissman,et al.  Nascent transcript sequencing visualizes transcription at nucleotide resolution , 2011, Nature.

[99]  John T. Lis,et al.  Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans , 2012, Nature Reviews Genetics.

[100]  S. Henikoff,et al.  Mot1 Redistributes TBP from TATA-Containing to TATA-Less Promoters , 2013, Molecular and Cellular Biology.

[101]  S. Eddy,et al.  Cell type–specific genomics of Drosophila neurons , 2012, Nucleic acids research.

[102]  U. Schibler,et al.  Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing , 1994, Molecular and cellular biology.

[103]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[104]  M. Biggin Animal transcription networks as highly connected, quantitative continua. , 2011, Developmental cell.

[105]  Martin Vingron,et al.  The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data , 2010, PloS one.

[106]  S. Henikoff,et al.  The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. , 2002, Molecular cell.

[107]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[108]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[109]  S. Henikoff,et al.  A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans , 2009, Nucleic acids research.

[110]  U. K. Laemmli,et al.  The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. , 2008, Molecular cell.

[111]  J. Bähler Faculty Opinions recommendation of Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. , 2012 .

[112]  Kevin Struhl,et al.  Genomic analysis of protein–DNA interactions in bacteria: insights into transcription and chromosome organization , 2007, Molecular microbiology.

[113]  R. Landgraf,et al.  Engineering of DNA binding proteins into site-specific cutters: reactivity of Trp repressor-1,10-phenanthroline chimeras. , 1996, Protein engineering.

[114]  E. Lazarides,et al.  Actin is the naturally occurring inhibitor of deoxyribonuclease I. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. C. Johnson,et al.  Identification of new Fis binding sites by DNA scission with Fis-1,10-phenanthroline-copper(I) chimeras. , 1996, Biochemistry.

[116]  M. Noll Subunit structure of chromatin , 1974, Nature.

[117]  S. Bekiranov,et al.  Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes , 2013, Science.

[118]  Wing-Kin Sung,et al.  Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries , 2009, PloS one.

[119]  S. Henikoff,et al.  Epigenome characterization at single base-pair resolution , 2011, Proceedings of the National Academy of Sciences.

[120]  I. Macaulay,et al.  Single Cell Genomics: Advances and Future Perspectives , 2014, PLoS genetics.

[121]  V. Studitsky,et al.  Mechanism of transcription through a nucleosome by RNA polymerase II. , 2013, Biochimica et biophysica acta.

[122]  J. Gatehouse,et al.  Nuclear "run-on" transcription assays. , 1995, Methods in molecular biology.

[123]  Wesley R. Legant,et al.  Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells , 2014, Cell.

[124]  S. Cockroft,et al.  Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures , 2013, Nature Structural &Molecular Biology.

[125]  T. Przytycka,et al.  Transcription dependent dynamic supercoiling is a short-range genomic force , 2013, Nature Structural &Molecular Biology.

[126]  Vishwanath R. Iyer,et al.  Widespread Misinterpretable ChIP-seq Bias in Yeast , 2013, PloS one.

[127]  A. Franke,et al.  DNA methylome analysis using short bisulfite sequencing data , 2012, Nature Methods.

[128]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[129]  Gangning Liang,et al.  Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules , 2012, Genome research.

[130]  S. Henikoff,et al.  Histone Replacement Marks the Boundaries of cis-Regulatory Domains , 2007, Science.

[131]  Archana Dhasarathy,et al.  Mapping chromatin structure in vivo using DNA methyltransferases. , 2004, Methods.