A Visual Analytics Approach to Understanding Spatiotemporal Hotspots

As data sources become larger and more complex, the ability to effectively explore and analyze patterns among varying sources becomes a critical bottleneck in analytic reasoning. Incoming data contain multiple variables, high signal-to-noise ratio, and a degree of uncertainty, all of which hinder exploration, hypothesis generation/exploration, and decision making. To facilitate the exploration of such data, advanced tool sets are needed that allow the user to interact with their data in a visual environment that provides direct analytic capability for finding data aberrations or hotspots. In this paper, we present a suite of tools designed to facilitate the exploration of spatiotemporal data sets. Our system allows users to search for hotspots in both space and time, combining linked views and interactive filtering to provide users with contextual information about their data and allow the user to develop and explore their hypotheses. Statistical data models and alert detection algorithms are provided to help draw user attention to critical areas. Demographic filtering can then be further applied as hypotheses generated become fine tuned. This paper demonstrates the use of such tools on multiple geospatiotemporal data sets.

[1]  P. Duff,et al.  Influenza vaccine. , 2013, Paediatrics & child health.

[2]  Ryan Hafen,et al.  Understanding syndromic hotspots - a visual analytics approach , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[3]  Chris Weaver,et al.  Multidimensional visual analysis using cross-filtered views , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[4]  William Ribarsky,et al.  Multi-Focused Geospatial Analysis Using Probes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  D.E. Brown,et al.  Improving crime data sharing and analysis tools for a Web-based Crime Analysis Toolkit: WebCAT 2.2 , 2008, 2008 IEEE Systems and Information Engineering Design Symposium.

[6]  Prasenjit Mitra,et al.  FemaRepViz: Automatic Extraction and Geo-Temporal Visualization of FEMA National Situation Updates , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[7]  David S. Ebert,et al.  LAHVA: Linked Animal-Human Health Visual Analytics , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[8]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[9]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Jonathan C. Roberts,et al.  Towards Ubiquitous Brushing for Information Visualization , 2006, Tenth International Conference on Information Visualisation (IV'06).

[11]  Wendy W Chapman,et al.  Classification of emergency department chief complaints into 7 syndromes: a retrospective analysis of 527,228 patients. , 2005, Annals of emergency medicine.

[12]  Stefan Biffl,et al.  PlanningLines: novel glyphs for representing temporal uncertainties and their evaluation , 2005, Ninth International Conference on Information Visualisation (IV'05).

[13]  Heidrun Schumann,et al.  3D information visualization for time dependent data on maps , 2005, Ninth International Conference on Information Visualisation (IV'05).

[14]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[15]  Ben Shneiderman,et al.  Interactive pattern search in time series , 2005, IS&T/SPIE Electronic Imaging.

[16]  J. Loonsk BioSense--a national initiative for early detection and quantification of public health emergencies. , 2004, MMWR supplements.

[17]  Heidrun Schumann,et al.  Axes-based visualizations with radial layouts , 2004, SAC '04.

[18]  Ben Shneiderman,et al.  Improving Accessibility and Usability of Geo-referenced Statistical Data , 2003, DG.O.

[19]  L. Hutwagner,et al.  The bioterrorism preparedness and response Early Aberration Reporting System (EARS) , 2003, Journal of Urban Health.

[20]  Joseph S. Lombardo,et al.  A systems overview of the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II) , 2003, Journal of Urban Health.

[21]  Luca Chittaro,et al.  Visualizing queries on databases of temporal histories: new metaphors and their evaluation , 2003, Data Knowl. Eng..

[22]  Jennifer L. Dungan,et al.  Visualizing spatially varying distribution data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[23]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[24]  Alan M. MacEachren,et al.  Case study: design and assessment of an enhanced geographic information system for exploration of multivariate health statistics , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[25]  Andreas Wierse,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[26]  Chris North,et al.  Dynamic queries and brushing on choropleth maps , 2001, Proceedings Fifth International Conference on Information Visualisation.

[27]  William W. Hargrove,et al.  Using multivariate clustering to characterize ecoregion borders , 1999, Comput. Sci. Eng..

[28]  Alan M. MacEachren,et al.  Geographic visualization: designing manipulable maps for exploring temporally varying georeferenced statistics , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[29]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[30]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[31]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[32]  S B Thacker,et al.  The Science of Public Health Surveillance , 1989, Journal of public health policy.

[33]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[34]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[35]  A D LANGMUIR,et al.  The surveillance of communicable diseases of national importance. , 1963, The New England journal of medicine.

[36]  W. Marsden I and J , 2012 .

[37]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[38]  Update: Influenza activity--United States and worldwide, 2006-07 season, and composition of the 2007-08 influenza vaccine. , 2007, MMWR. Morbidity and mortality weekly report.

[39]  Paul A. Longley,et al.  Kernel Density Estimation and Percent Volume Contours in General Practice Catchment Area Analysis in Urban Areas , 2007 .

[40]  J. Marc Overhage,et al.  The Indiana Public Health Emergency Surveillance System: Ongoing Progress, Early Findings, and Future Directions , 2006, AMIA.

[41]  Luc Anselin,et al.  SPATIAL ANALYSES OF HOMICIDE WITH AREAL DATA , 2004 .

[42]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[43]  O Leg S Mirnov,et al.  Visualizing Multivariate Spatial Correlation with Dynamically Linked Windows , 2002 .

[44]  U. Fayyad,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .