Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria
暂无分享,去创建一个
Frederico G. Guimarães | Elizabeth F. Wanner | Ricardo H. C. Takahashi | Peter J. Fleming | P. Fleming | R. Takahashi | F. Guimarães | E. Wanner
[1] Frederico G. Guimarães,et al. A Differential Mutation operator for the archive population of multi-objective evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.
[2] Joshua D. Knowles,et al. Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .
[3] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[4] Konstantinos G. Margaritis,et al. Performance comparison of memetic algorithms , 2004, Appl. Math. Comput..
[5] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[6] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[7] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[8] James Smith,et al. A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.
[9] Pablo Moscato,et al. Memetic algorithms: a short introduction , 1999 .
[10] Christine A. Shoemaker,et al. Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.
[11] Frederico G. Guimarães,et al. Quadratic Approximation-Based Coordinate Change in Genetic Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[12] Jaime A. Ramírez,et al. Hybrid optimization in electromagnetics using sensitivity information from a neuro-fuzzy model , 2000 .
[13] Francisco Herrera,et al. Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.
[14] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[15] Kevin Kok Wai Wong,et al. Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[16] Bin Li,et al. Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..
[17] A. Ratle. Optimal sampling strategies for learning a fitness model , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[18] Elizabeth F. Wanner,et al. A new performance metric for multiobjective optimization: the integrated sphere counting , 2007, 2007 IEEE Congress on Evolutionary Computation.
[19] Hisao Ishibuchi,et al. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..
[20] P. Khargonekar,et al. Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .
[21] David E. Goldberg,et al. A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[22] Yacov Y. Haimes,et al. Approach to performance and sensitivity multiobjective optimization: The goal attainment method , 1975 .
[23] Fan Jiancong,et al. An Evolutionary Mining Model in Incremental Data Mining , 2009, 2009 Fifth International Conference on Natural Computation.
[24] Xiaolin Hu,et al. Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[25] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[26] C. Scherer,et al. Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..
[27] Mikkel T. Jensen,et al. Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..
[28] Joshua D. Knowles. Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .
[29] Carlos A. Coello Coello,et al. Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored , 2009, Frontiers of Computer Science in China.
[30] Andy J. Keane,et al. Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.
[31] J. D. Schaffer,et al. Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .
[32] Carlos A. Coello Coello,et al. Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.
[33] Carlos Artemio Coello-Coello,et al. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .
[34] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[35] Lothar Thiele,et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .
[36] Eckart Zitzler,et al. Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .
[37] Joshua D. Knowles,et al. M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[38] Frederico G. Guimarães,et al. New operators for multi‐objective clonal selection algorithms , 2009 .
[39] M. Dwass. Modified Randomization Tests for Nonparametric Hypotheses , 1957 .
[40] Daniel,et al. Estimation of Pareto sets in the mixed H 2 = H 1 control problem , 2004 .
[41] Carlos M. Fonseca,et al. Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.
[42] Paulo Ferreira,et al. Multiobjective H/sub 2//H/sub /spl infin// guaranteed cost PID design , 1997 .
[43] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[44] Kees Roos,et al. On convex quadratic approximation , 2000 .
[45] Frederico G. Guimarães,et al. A Quadratic Approximation-Based Local Search Procedure for Multiobjective Genetic Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[46] Bernd Freisleben,et al. Fitness landscapes and memetic algorithm design , 1999 .
[47] Pablo Moscato,et al. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .
[48] Anikó Ekárt,et al. Genetic algorithms in computer aided design , 2003, Comput. Aided Des..
[49] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[50] Peter J. Fleming,et al. An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.
[51] Bernhard Sendhoff,et al. A critical survey of performance indices for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[52] Bernhard Sendhoff,et al. A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..
[53] Hisao Ishibuchi,et al. A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[54] K. Rasheed,et al. An incremental-approximate-clustering approach for developing dynamic reduced models for design optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[55] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[56] Carlos A. Coello Coello,et al. Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.
[57] Frederico G. Guimarães,et al. Constraint quadratic approximation operator for treating equality constraints with genetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.
[58] Joshua D. Knowles,et al. On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).