Cubeb Oil Lures: Terpenoid Emissions, Trapping Efficacy, and Longevity for Attraction of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae)

ABSTRACT Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood borer and the primary vector of Raffaelea lauricola, a symbiotic fungus that causes laurel wilt. This lethal disease has decimated native redbay [Persea borbonia (L.) Sprengel] and swampbay [Persea palustris (Rafinesque) Sargent] throughout southeastern U.S. forests, and currently threatens avocado (Persea americana Miller) in Florida. To curtail the spread of laurel wilt, effective attractants are needed for early detection of the vector. Phoebe oil lures were the best known attractant for X. glabratus, but they are no longer available. The current detection system uses manuka oil lures, but previous research indicated that manuka lures have a short field life in Florida. Recently, cubeb oil was identified as a new attractant for X. glabratus, and cubeb bubble lures are now available commercially. This study compared trapping efficacy and field longevity of cubeb and manuka lures with phoebe lures that had been in storage since 2010 over a 12-wk period in south Florida. In addition, terpenoid emissions were quantified from cubeb and manuka lures aged outdoors for 12 wk. Captures were comparable with all three lures for 3 wk, but by 4 wk, captures with manuka were significantly less. Equivalent captures were obtained with cubeb and phoebe lures for 7 wk, but captures with cubeb were significantly greater from 8 to 12 wk. Our results indicate that cubeb bubble lures are the most effective tool currently available for detection of X. glabratus, with a field life of 3 months due to extended low release of attractive sesquiterpenes, primarily &agr;-copaene and &agr;-cubebene.

[1]  R. Ploetz,et al.  North American Lauraceae: Terpenoid Emissions, Relative Attraction and Boring Preferences of Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) , 2014, PloS one.

[2]  X. Martini,et al.  Eucalyptol is an Attractant of the Redbay Ambrosia Beetle, Xyleborus Glabratus , 2014, Journal of Chemical Ecology.

[3]  X. Martini,et al.  Volatiles from the symbiotic fungus Raffaelea lauricola are synergistic with Manuka lures for increased capture of the Redbay ambrosia beetle Xyleborus glabratus , 2014 .

[4]  R. Ploetz,et al.  Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles , 2014 .

[5]  M. Deyrup,et al.  Evaluation of seven essential oils identifies cubeb oil as most effective attractant for detection of Xyleborus glabratus , 2014, Journal of Pest Science.

[6]  J. Crane,et al.  Potential of Contact Insecticides to Control Xyleborus glabratus (Coleoptera: Curculionidae), A Vector of Laurel Wilt Disease in Avocados , 2013, Journal of economic entomology.

[7]  R. Ploetz,et al.  Evaluation of Litchi chinensis for Host Status to Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) and Susceptibility to Laurel Wilt Disease , 2013 .

[8]  R. Schnell,et al.  Terpenoid Variations within and among Half-Sibling Avocado Trees, Persea americana Mill. (Lauraceae) , 2013, PloS one.

[9]  C. Brownie,et al.  The Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) uses Stem Silhouette Diameter as a Visual Host-Finding Cue , 2013, Environmental entomology.

[10]  Thomas H. Atkinson,et al.  Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. , 2013, Zootaxa.

[11]  J. Hanula,et al.  Variation in Manuka Oil Lure Efficacy for Capturing Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and Cubeb Oil as an Alternative Attractant , 2013, Environmental Entomology.

[12]  P. Kendra,et al.  An Uncertain Future for American Lauraceae: A Lethal Threat from Redbay Ambrosia Beetle and Laurel Wilt Disease (A Review) , 2013 .

[13]  M. Deyrup,et al.  Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram Responses to Host-Based Attractants and Temporal Patterns in Host-Seeking Flight , 2012, Environmental entomology.

[14]  R. Ploetz,et al.  Effect of Trap Size, Trap Height and Age of Lure on Sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its Flight Periodicity and Seasonality , 2012 .

[15]  D. Carrillo,et al.  Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) that Breed in Avocado Wood in Florida , 2012 .

[16]  R. Ploetz,et al.  Responses of avocado to laurel wilt, caused by Raffaelea lauricola , 2012 .

[17]  M. Deyrup,et al.  Method for Collection of Live Redbay Ambrosia Beetles, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) , 2012 .

[18]  R. Ploetz,et al.  Temporal Analysis of Sesquiterpene Emissions from Manuka and Phoebe Oil Lures and Efficacy for Attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) , 2012, Journal of economic entomology.

[19]  L. Stelinski,et al.  The Scent of a Partner: Ambrosia Beetles Are Attracted to Volatiles from Their Fungal Symbionts , 2011, Journal of Chemical Ecology.

[20]  Michael C. Thomas,et al.  Chemical Control of the Redbay Ambrosia Beetle, Xyleborus glabratus, and Other Scolytinae (Coleoptera: Curculionidae) , 2011 .

[21]  P. Kendra,et al.  Comparative Analysis of Terpenoid Emissions from Florida Host Trees of the Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) , 2011 .

[22]  J. Peña,et al.  Attraction of the Redbay Ambrosia Beetle, Xyleborus glabratus, to Avocado, Lychee, and Essential Oil Lures , 2011, Journal of Chemical Ecology.

[23]  J. Peña,et al.  Diversity of Scolytinae (Coleoptera: Curculionidae) Attracted to Avocado, Lychee, and Essential Oil Lures , 2011 .

[24]  R. Ploetz,et al.  Toward Fungicidal Management of Laurel Wilt of Avocado. , 2011, Plant disease.

[25]  P. Kendra,et al.  Attraction and Electroantennogram Responses of Male Mediterranean Fruit Fly to Volatile Chemicals from Persea, Litchi and Ficus Wood , 2011, Journal of Chemical Ecology.

[26]  T. Harrington,et al.  New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus , 2010 .

[27]  A. Kasurinen,et al.  Diversity of volatile organic compound emissions from flowering and vegetative branches of Yeheb, Cordeauxia edulis (Caesalpiniaceae), a threatened evergreen desert shrub , 2010 .

[28]  Daniel R. Miller,et al.  Ethanol and (−)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US , 2009, Journal of Chemical Ecology.

[29]  J. Hanula,et al.  Manuka Oil and Phoebe Oil are Attractive Baits for Xyleborus glabratus (Coleoptera: Scolytinae), the Vector of Laurel Wilt , 2008, Environmental entomology.

[30]  J. Smith,et al.  Effect of Propiconazole on Laurel Wilt Disease Development in Redbay Trees and on the Pathogen In Vitro , 2008, Arboriculture & Urban Forestry.

[31]  J. Crane,et al.  Ability of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) to Bore into Young Avocado (Lauraceae) Plants and Transmit the Laurel Wilt Pathogen (Raffaelea sp) , 2008 .

[32]  J. Hanula,et al.  Biology and Host Associations of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae), Exotic Vector of Laurel Wilt Killing Redbay Trees in the Southeastern United States , 2008, Journal of economic entomology.

[33]  T. Poland,et al.  Development of a Host-Based Semiochemical Lure for Trapping Emerald Ash Borer Agrilus planipennis (Coleoptera: Buprestidae) , 2008, Environmental entomology.

[34]  M. Ulyshen,et al.  A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States. , 2008, Plant disease.

[35]  T. Harrington,et al.  Raffaelea lauricola , a new ambrosia beetle symbiont and pathogen on the Lauracea . , 2008 .

[36]  A. Cognato,et al.  Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) Occurring North of Mexico, with an Illustrated Key , 2006 .

[37]  J. Sivinski,et al.  A bioassay system for collecting volatiles while simultaneously attracting tephritid fruit flies , 1993, Journal of Chemical Ecology.

[38]  R. Heath,et al.  Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification , 1992, Journal of Chemical Ecology.

[39]  B. S. Lindgren A MULTIPLE FUNNEL TRAP FOR SCOLYTID BEETLES (COLEOPTERA) , 1983, The Canadian Entomologist.