Particle Swarm Optimization for Bézier Surface Reconstruction

This work concerns the issue of surface reconstruction, that is, the generation of a surface from a given cloud of data points. Our approach is based on a metaheuristic algorithm, the so-called Particle Swarm Optimization. The paper describes its application to the case of Bezier surface reconstruction, for which the problem of obtaining a suitable parameterization of the data points has to be properly addressed. A simple but illustrative example is used to discuss the performance of the proposed method. An empirical discussion about the choice of the social and cognitive parameters for the PSO algorithm is also given.

[1]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[2]  Helmut Pottmann,et al.  Industrial geometry: recent advances and applications in CAD , 2005, Comput. Aided Des..

[3]  Jack Dongarra,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[4]  Tamás Várady,et al.  Reverse Engineering , 2002, Handbook of Computer Aided Geometric Design.

[5]  G. W. Vickers,et al.  Free-form surface reconstruction for machine vision rapid prototyping , 1993 .

[6]  H. El-Mounayri,et al.  Optimized CNC end-milling: A practical approach , 2002, Int. J. Comput. Integr. Manuf..

[7]  Anath Fischer,et al.  Parameterization and Reconstruction from 3D Scattered Points Based on Neural Network and PDE Techniques , 2001, IEEE Trans. Vis. Comput. Graph..

[8]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  Miklos Hofimann Free-form Surfaces for Scattered Data by Neural Networks , 1998 .

[10]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[11]  Xue Yan,et al.  Neural network approach to the reconstruction of freeform surfaces for reverse engineering , 1995, Comput. Aided Des..

[12]  Marina L. Gavrilova,et al.  Computational Science and Its Applications - ICCSA 2007, International Conference, Kuala Lumpur, Malaysia, August 26-29, 2007. Proceedings, Part I , 2007, ICCSA.

[13]  Andrés Iglesias,et al.  Extending Neural Networks for B-Spline Surface Reconstruction , 2002, International Conference on Computational Science.

[14]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[15]  Luís N. Vicente,et al.  A particle swarm pattern search method for bound constrained global optimization , 2007, J. Glob. Optim..

[16]  Andrés Iglesias,et al.  A New Artificial Intelligence Paradigm for Computer-Aided Geometric Design , 2000, AISC.

[17]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[18]  Angel Cobo,et al.  Bézier Curve and Surface Fitting of 3D Point Clouds Through Genetic Algorithms, Functional Networks and Least-Squares Approximation , 2007, ICCSA.

[19]  Andrés Iglesias,et al.  Functional networks for B-spline surface reconstruction , 2004, Future Gener. Comput. Syst..

[20]  George K. Knopf,et al.  Adaptive reconstruction of free-form surfaces using Bernstein basis function networks , 2001 .

[21]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[22]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[23]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[24]  Kathryn A. Ingle,et al.  Reverse Engineering , 1996, Springer US.