Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations

Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron–nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing.

[1]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[2]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[3]  D. Budker,et al.  Bulk nuclear polarization enhanced at room temperature by optical pumping. , 2012, Physical review letters.

[4]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[5]  Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. , 2012, Nature communications.

[6]  A. Laraoui,et al.  Approach to dark spin cooling in a diamond nanocrystal. , 2013, ACS nano.

[7]  G. Aeppli,et al.  Dipolar Antiferromagnetism and Quantum Criticality in LiErF4 , 2012, Science.

[8]  C. Slichter Principles of magnetic resonance , 1963 .

[9]  Patrick J. Coles,et al.  Optical Polarization of $^{13}$C Nuclei in Diamond through Nitrogen-Vacancy Centers , 2009, 0911.1098.

[10]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[11]  D. F. McMorrow,et al.  Quantum Phase Transition of a Magnet in a Spin Bath , 2005, Science.

[12]  J. Maze,et al.  High-resolution spectroscopy of single NV defects coupled with nearby 13 C nuclear spins in diamond , 2012, 1204.2947.

[13]  C. Degen,et al.  Single-proton spin detection by diamond magnetometry. , 2014, Science.

[14]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[15]  Lucio Frydman,et al.  Zeno and anti-zeno polarization control of spin ensembles by induced dephasing. , 2010, Physical review letters.

[16]  Dieter Suter,et al.  Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins , 2015, Science.

[17]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[18]  J. Ardenkjær-Larsen,et al.  Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Degen,et al.  Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor , 2013, 1312.2394.

[20]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[21]  P Cappellaro,et al.  Coherence of an optically illuminated single nuclear spin qubit. , 2007, Physical review letters.

[22]  J. Wrachtrup,et al.  Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy c , 2009, 0909.2783.

[23]  D. Englund,et al.  Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond. , 2014, Nano letters.

[24]  J Wrachtrup,et al.  Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. , 2008, Physical review letters.

[25]  D. Awschalom,et al.  Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond. , 2011, Physical review letters.

[26]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[27]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[28]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[29]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[30]  Johanna L. Miller Nanoscale nuclear magnetic resonance , 2013 .

[31]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[32]  Dieter Suter,et al.  Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins , 2014, Science.

[33]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[34]  M. Thaning,et al.  Real-time metabolic imaging. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[36]  A. Krueger,et al.  New carbon materials: biological applications of functionalized nanodiamond materials. , 2008, Chemistry.

[37]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[38]  Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields , 2014, 1412.5441.

[39]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[40]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[41]  M. B. Plenio,et al.  Optical hyperpolarization of 13 C nuclear spins in nanodiamond ensembles , 2015, 1504.02368.

[42]  D. Suter,et al.  NMR quantum simulation of localization effects induced by decoherence. , 2010, Physical review letters.

[43]  A. Pines,et al.  Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond , 2015, Nature Communications.

[44]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[45]  S. Glaser,et al.  Dynamic nuclear polarization at high magnetic fields in liquids. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[46]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[47]  Magnetic dipolar ordering and quantum phase transition in an Fe8 molecular magnet. , 2011, Physical review letters.

[48]  M. Goldman,et al.  Principles of dynamic nuclear polarisation , 1978 .

[49]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[50]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[51]  R. Griffin,et al.  In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[52]  Adam Gali,et al.  13C hyperfine interactions in the nitrogen-vacancy centre in diamond , 2011 .

[53]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[54]  Gershon Kurizki,et al.  Thermodynamic control by frequent quantum measurements , 2008, Nature.