Light-responsive block copolymers.

Stimuli-responsive polymers are the subject of intense research because they are able to show responses to various environmental changes. Among those stimuli, light has attracted much attention since it can be localized in time and space and it can also be triggered from outside of the system. In this paper, we review light-responsive block copolymers (LRBCs) that combine characteristic features of block copolymers, e.g., self-assembly behavior, and light-responsive systems. The different photo-responsive moieties that have been incorporated so far in block copolymers as well as the proposed applications are discussed.

[1]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[2]  Dany Dumont,et al.  Mechanically tunable diffraction gratings recorded on an azobenzene elastomer , 2002 .

[3]  Haifeng Yu,et al.  Photoinduced nanoscale cooperative motion in a well-defined triblock copolymer. , 2007, Small.

[4]  Thomas P. Russell,et al.  Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene‐block‐poly(ethylene oxide) , 2007 .

[5]  Patrick Theato,et al.  Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction , 2009 .

[6]  Patrick Theato,et al.  Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups , 2009 .

[7]  S. Hvilsted,et al.  Methacrylic azopolymers for holographic storage: A comparison among different polymer types , 2007 .

[8]  G. Kumar,et al.  Photochemistry of azobenzene-containing polymers , 1989 .

[9]  Haifeng Yu,et al.  Well-Defined Liquid-Crystalline Diblock Copolymers with an Azobenzene Moiety: Synthesis, Photoinduced Alignment and their Holographic Properties , 2008 .

[10]  J. Gohy,et al.  A versatile strategy for the synthesis of block copolymers bearing a photocleavable junction , 2010 .

[11]  Craig J Hawker,et al.  Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. , 2006, Chemical Society reviews.

[12]  Brian H. Marcus,et al.  Holographic data storage technology , 2000, IBM J. Res. Dev..

[13]  Graeme Moad,et al.  Radical addition-fragmentation chemistry in polymer synthesis , 2008 .

[14]  Kazuhito Watanabe,et al.  Optical Alignment and Patterning of Nanoscale Microdomains in a Block Copolymer Thin Film , 2006 .

[15]  Sheng Dai,et al.  Thermo- and photo-responsive polymeric systems , 2009 .

[16]  H. Finkelmann,et al.  Liquid‐Crystalline side‐chain AB block copolymers by direct anionic polymerization of a mesogenic methacrylate , 1994 .

[17]  Scott R. Clingman,et al.  Molecular Design, Synthesis, and Characterization of Liquid Crystal−Coil Diblock Copolymers with Azobenzene Side Groups , 1997 .

[18]  H. Finkelmann,et al.  Structure formation of liquid crystalline block copolymers , 1996 .

[19]  Daoyong Chen,et al.  Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. , 2005, Accounts of chemical research.

[20]  Yue Zhao,et al.  Photocontrollable block copolymer micelles: what can we control? , 2009 .

[21]  D. Haarer,et al.  Diblock Copolymers with Azobenzene Side-Groups and Polystyrene Matrix: Synthesis, Characterization and Photoaddressing , 2004 .

[22]  J. Rodríguez-Hernández,et al.  Toward 'smart' nano-objects by self-assembly of block copolymers in solution , 2005 .

[23]  Yue Zhao,et al.  Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles , 2006 .

[24]  K. Müllen,et al.  Anthracene derivatives as novel initiators for anionic and cationic polymerizations , 1994 .

[25]  Wei-Nien Su,et al.  Sphere to disk transformation of micro-particle composed of azobenzene-containing amphiphilic diblock copolymers under irradiation at 436 nm , 2007 .

[26]  Xia Tong,et al.  Photoresponsive Nanogels Based on Photocontrollable Cross-Links , 2009 .

[27]  Yue Zhao,et al.  Azobenzene Elastomers for Mechanically Tunable Diffraction Gratings , 2002 .

[28]  Haifeng Yu,et al.  Novel Amphiphilic Diblock and Triblock Liquid-Crystalline Copolymers with Well-Defined Structures Prepared by Atom Transfer Radical Polymerization , 2005 .

[29]  W. Hinsberg,et al.  Block copolymer based nanostructures: materials, processes, and applications to electronics. , 2010, Chemical reviews.

[30]  P. Théato,et al.  Synthesis of polymeric 1‐iminopyridinium ylides as photoreactive polymers , 2010 .

[31]  Kunihiro Ichimura,et al.  Photoalignment of Liquid-Crystal Systems. , 2000, Chemical reviews.

[32]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[33]  Yue Zhao,et al.  Confinement Effects on Photoalignment, Photochemical Phase Transition, and Thermochromic Behavior of Liquid Crystalline Azobenzene-Containing Diblock Copolymers , 2004 .

[34]  Guojun Liu,et al.  Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers , 1996 .

[35]  Christopher Barner-Kowollik,et al.  The future of reversible addition fragmentation chain transfer polymerization , 2008 .

[36]  T. Galstian,et al.  Synthesis of Azobenzene-Containing Diblock Copolymers Using Atom Transfer Radical Polymerization and the Photoalignment Behavior , 2003 .

[37]  Marc A. Hillmyer,et al.  Nanoporous materials from block copolymer precursors , 2005 .

[38]  Tomiki Ikeda,et al.  Photomodulation of liquid crystal orientations for photonic applications , 2003 .

[39]  Xinghe Fan,et al.  Self‐Assembly and Photoresponsivity Property of Amphiphilic ABA Triblock Copolymers Containing Azobenzene Moieties in Dilute Solution , 2009 .

[40]  Bin Zhao,et al.  Multiple Micellization and Dissociation Transitions of Thermo- and Light-Sensitive Poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in Water , 2008 .

[41]  Yue Zhao,et al.  Azobenzene-Containing Thermoplastic Elastomers: Coupling Mechanical and Optical Effects , 2001 .

[42]  B. Qi,et al.  Synthesis of Double Side-Chain Liquid Crystalline Block Copolymers Using RAFT Polymerization and the Orientational Cooperative Effect , 2008 .

[43]  Yue Zhao,et al.  A new design for light-breakable polymer micelles. , 2005, Journal of the American Chemical Society.

[44]  A. Deffieux,et al.  Reversible photodimerisation of ω‐anthrylpolystyrenes , 1996 .

[45]  Paul Rochon,et al.  Photoinduced motions in azo-containing polymers. , 2002, Chemical reviews.

[46]  Li Lin,et al.  UV-Responsive Behavior of Azopyridine-Containing Diblock Copolymeric Vesicles: Photoinduced Fusion, Disintegration and Rearrangement. , 2009, Macromolecular rapid communications.

[47]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[48]  H. Finkelmann,et al.  On the thread‐like morphology of LC/I block copolymers in nematic solvents , 1998 .

[49]  Wei-Nien Su,et al.  Reversible Photocontrolled Swelling-Shrinking Behavior of Micron Vesicles Self-Assembled from Azopyridine-Containing Diblock Copolymer , 2008 .

[50]  J. Penelle,et al.  Synthesis and Thin Film Characterization of Poly(styrene-block-methyl methacrylate) Containing an Anthracene Dimer Photocleavable Junction Point , 2002 .

[51]  C. Alexander,et al.  Stimuli responsive polymers for biomedical applications. , 2005, Chemical Society reviews.

[52]  T. Seki,et al.  Surface Relief Gratings in Host–Guest Supramolecular Materials , 2000 .

[53]  A. Castellan,et al.  Photodimerization of anthracenes in fluid solution:structural aspects , 2000 .

[54]  E. Harth,et al.  New polymer synthesis by nitroxide mediated living radical polymerizations. , 2001, Chemical reviews.

[55]  T. Ikeda,et al.  Enhancement of Surface‐Relief Gratings Recorded on Amphiphilic Liquid‐Crystalline Diblock Copolymer by Nanoscale Phase Separation , 2005 .

[56]  Ning Zhao,et al.  Multi-membrane hydrogel fabricated by facile dynamic self-assembly , 2009 .

[57]  H. Schmidt,et al.  Polymer Blends with Azobenzene‐ Containing Block Copolymers as Stable Rewritable Volume Holographic Media , 2007 .

[58]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[59]  Xiaogong Wang,et al.  Amphiphilic block copolymers bearing strong push–pull azo chromophores: Synthesis, micelle formation and photoinduced shape deformation , 2009 .

[60]  Patrick Theato,et al.  Temperature- and Light-Responsive Polyacrylamides Prepared by a Double Polymer Analogous Reaction of Activated Ester Polymers , 2009 .

[61]  Sébastien Perrier,et al.  Macromolecular design via réversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization , 2005 .

[62]  C. Slugovc,et al.  UV‐induced crosslinking of ring opening metathesis block copolymer micelles , 2008 .

[63]  Soojin Park,et al.  Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. , 2009, Journal of the American Chemical Society.

[64]  Guojun Liu,et al.  Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization , 2004 .

[65]  E. Kramer,et al.  Blends of Poly(methacrylate) Block Copolymers with Photoaddressable Segments , 2007 .

[66]  Bongjin Moon,et al.  Synthesis of Photocleavable Poly(styrene-block-ethylene oxide) and Its Self-Assembly into Nanoporous Thin Films , 2009 .

[67]  B. Qi,et al.  Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking , 2007 .

[68]  Krzysztof Matyjaszewski,et al.  Light-induced reversible formation of polymeric micelles. , 2007, Angewandte Chemie.

[69]  Sergei S. Orlov,et al.  Holographic data storage systems , 1993, Proceedings of the IEEE.

[70]  U. Schubert,et al.  Nanoporous Thin Films from Self‐Assembled Metallo‐ Supramolecular Block Copolymers , 2005 .

[71]  M. Guo,et al.  Non-covalently connected micelles (NCCMs): the origins and development of a new concept , 2009 .

[72]  U. Schubert,et al.  Are o-Nitrobenzyl (Meth)acrylate Monomers Polymerizable by Controlled-Radical Polymerization? , 2009 .

[73]  Richard A. Evans,et al.  Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond , 2010 .

[74]  Jean-François Gohy,et al.  Block copolymer micelles , 2005 .

[75]  Haifeng Yu,et al.  Photoinduced alignment of nanocylinders by supramolecular cooperative motions. , 2006, Journal of the American Chemical Society.

[76]  Yue Zhao,et al.  How can azobenzene block copolymer vesicles be dissociated and reformed by light? , 2005, The journal of physical chemistry. B.

[77]  Luc Tremblay,et al.  Corona-Cross-Linked Polymer Vesicles Displaying a Large and Reversible Temperature-Responsive Volume Transition , 2009 .

[78]  Christopher Barner-Kowollik,et al.  Handbook of RAFT polymerization , 2008 .

[79]  H. Becker Unimolecular photochemistry of anthracenes , 1993 .

[80]  S. Nagano,et al.  Photocontrolled microphase separation of block copolymers in two dimensions. , 2005, Journal of the American Chemical Society.

[81]  Xiao Hu,et al.  New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior , 2005 .

[82]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[83]  S. Armes,et al.  Recent advances in shell cross-linked micelles. , 2007, Chemical communications.

[84]  Xiao Hu,et al.  Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film , 2005 .

[85]  S. Stupp,et al.  Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. , 2008, Journal of the American Chemical Society.

[86]  H. Schmidt,et al.  Holographic Gratings in Diblock Copolymers with Azobenzene and Mesogenic Side Groups in the Photoaddressable Dispersed Phase , 2005 .

[87]  S. Nagano,et al.  Photoinduced 3D Ordering and Patterning of Microphase-Separated Nanostructure in Polystyrene-Based Block Copolymer , 2007 .

[88]  J. Allard,et al.  A new two-photon-sensitive block copolymer nanocarrier. , 2009, Angewandte Chemie.

[89]  Kazuhito Watanabe,et al.  Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties , 2002 .

[90]  Haifeng Yu,et al.  Photoresponsive Behavior and Photochemical Phase Transition of Amphiphilic Diblock Liquid-Crystalline Copolymer , 2005 .

[91]  Yanhua Luo,et al.  Photoinduced Fusion of Micro‐Vesicles Self‐Assembled from Azobenzene‐Containing Amphiphilic Diblock Copolymers , 2007 .

[92]  Yue Zhao,et al.  Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates , 2004 .

[93]  Y. Morishima,et al.  Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[94]  J. Penelle,et al.  Nano- to Macro-Sized Heterogeneities Using Cleavable Diblock Copolymers , 2004 .

[95]  Guojun Liu,et al.  Hairy, Semi-shaved, and Fully Shaved Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) , 1998 .

[96]  Xiaogong Wang,et al.  Synthesis of Aminoazobenzene‐Containing Diblock Copolymer and Photoinduced Deformation Behavior of its Micelle‐Like Aggregates , 2007 .

[97]  M. Lepage,et al.  ``Decoration'' of Shell Cross-Linked Reverse Polymer Micelles Using ATRP: A New Route to Stimuli-Responsive Nanoparticles , 2008 .

[98]  Jacques A. Delaire,et al.  Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials. , 2000, Chemical reviews.