Product rotational alignment in NO(X) + Kr collisions

[1]  M. Lemeshko,et al.  An analytic model of the stereodynamics of rotationally inelastic molecular collisions. , 2009, Physical chemistry chemical physics : PCCP.

[2]  M. Brouard,et al.  Inelastic scattering of He atoms and NO(X2Pi) molecules: the role of parity on the differential cross section. , 2009, The journal of physical chemistry. A.

[3]  M. Lemeshko,et al.  Model analysis of rotationally inelastic Ar + H2O scattering in an electric field. , 2009, The journal of physical chemistry. A.

[4]  J. Kłos,et al.  Joint experimental-theoretical investigation of the lower bound states of the NO(X2Pi)-Kr complex. , 2009, The journal of physical chemistry. A.

[5]  M. Lemeshko,et al.  Collisions of paramagnetic molecules in magnetic fields : An analytic model based on Fraunhofer diffraction of matter waves , 2008, 0809.3331.

[6]  M. Lemeshko,et al.  The effect of a nonresonant radiative field on low-energy rotationally inelastic collisions , 2008, 0804.4845.

[7]  M. Lemeshko,et al.  An analytic model of rotationally inelastic collisions of polar molecules in electric fields. , 2008, The Journal of chemical physics.

[8]  J. Kłos,et al.  Quantum scattering of NO(X2Π) with He(1S): Temperature dependence of rotational (de)-excitation rate coefficients , 2008 .

[9]  S. Marinakis,et al.  Do vectors point the way to understanding energy transfer in molecular collisions? , 2008, Chemical Society reviews.

[10]  J. Aldegunde,et al.  Quantum mechanical limits to the control of atom-diatom chemical reactions through the polarisation of the reactants. , 2008, Physical chemistry chemical physics : PCCP.

[11]  Yoshihiro Sumiyoshi,et al.  Intermolecular potential energy surface of Ar-NO. , 2007, The Journal of chemical physics.

[12]  M. Brouard,et al.  Fully quantum state-resolved inelastic scattering between He and NO(X2?). , 2007 .

[13]  S. Stolte,et al.  Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering. , 2006, Journal of the American Chemical Society.

[14]  D. Chandler,et al.  Differential cross sections for collisions of hexapole state-selected NO with He. , 2005, The Journal of chemical physics.

[15]  H. Zacharias,et al.  Corrigendum to “Depolarisation of the spatial alignment of the rotational angular momentum vector by hyperfine interaction” [Chem. Phys. 301 (2004) 189] , 2005 .

[16]  James K. G. Watson,et al.  Rotational Spectroscopy of Diatomic Molecules , 2003 .

[17]  F. J. Aoiz,et al.  Classical stereodynamics in Ar + NO inelastic collisions , 2004 .

[18]  H. Zacharias,et al.  Depolarisation of the spatial alignment of the rotational angular momentum vector by hyperfine interaction , 2004 .

[19]  Y. Kim,et al.  Quantum interference in the REMPI detection of aligned NO , 2004 .

[20]  George L. Barnes,et al.  Ion imaging studies of product rotational alignment in collisions of NO (X2Π1/2,j=0.5) with Ar , 2004 .

[21]  Y. Kim,et al.  REMPI detection of alignment in NO collisions , 2004 .

[22]  Toshinori Suzuki,et al.  Fully State-Resolved Differential Cross Sections for the Inelastic Scattering of the Open-Shell NO Molecule by Ar , 2001, Science.

[23]  George L. Barnes,et al.  Direct Measurement of the Preferred Sense of NO Rotation After Collision with Argon , 2001, Science.

[24]  G. Berden,et al.  Molecular reorientation in collisions of OH + Ar. , 2001, Physical review letters.

[25]  M. Alexander A new, fully ab initio investigation of the NO(X 2Π)Ar system. I. Potential energy surfaces and inelastic scattering , 1999 .

[26]  L. Bañares,et al.  A unified quantal and classical description of the stereodynamics of elementary chemical reactions: State-resolved k–k′–j′ vector correlation for the H+D2(v=0, j=0) reaction , 1999 .

[27]  M. Alexander Polarization and steric effects in inelastic collisions of NO(X 2Π) with Ar and He , 1999 .

[28]  H. Meyer Electronic fine structure transitions and rotational energy transfer of NO(X 2Π) in collisions with He: A counterpropagating beam study , 1995 .

[29]  H. Meyer Detection of collision-induced rotational alignment in counterpropagating beam scattering , 1994 .

[30]  R. Zare,et al.  Orientation and Alignment of Reaction Products , 1994 .

[31]  D. Manolopoulos,et al.  A stable linear reference potential algorithm for solution of the quantum close‐coupled equations in molecular scattering theory , 1987 .

[32]  David E. Manolopoulos,et al.  An improved log derivative method for inelastic scattering , 1986 .

[33]  M. Alexander Rotationally inelastic collisions between a diatomic molecule in a2Pi electronic state and a structureless target , 1982 .