Frontiers in fluorescence microscopy.

How we see organisms and cells depends on the tools at our disposal. For over 150 years, biologists were forced to rely on fixed, dehydrated and stained specimens in order to guess how the living cells could function. It all changed abruptly during the last two decades when the rapid development of novel imaging techniques revolutionized the way scientists look at the structures of life alive.

[1]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Lippincott-Schwartz,et al.  Diffusional Mobility of Golgi Proteins in Membranes of Living Cells , 1996, Science.

[3]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[4]  A Kusumi,et al.  Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells. , 1993, Biophysical journal.

[5]  Elliot L Elson,et al.  Quick tour of fluorescence correlation spectroscopy from its inception. , 2004, Journal of biomedical optics.

[6]  Kjell Carlsson,et al.  Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation , 1997 .

[7]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[8]  Florian Müller,et al.  Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. , 2006, Biophysical journal.

[9]  George Gabriel Stokes,et al.  Mathematical and Physical Papers: Abstract of a paper “On the Change of Refrangibility of Light” , 2009 .

[10]  E. V. van Munster,et al.  Fluorescence lifetime imaging microscopy (FLIM). , 2005, Advances in biochemical engineering/biotechnology.

[11]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[12]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[13]  T. Hirano,et al.  Quantum dots in bio-imaging: Revolution by the small. , 2005, Biochemical and biophysical research communications.

[14]  S. Hell,et al.  Lens Aberrations in Confocal Fluorescence Microscopy , 1995 .

[15]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[16]  Clifford M. Babbey,et al.  Performance comparison between the high‐speed Yokogawa spinning disc confocal system and single‐point scanning confocal systems , 2005, Journal of microscopy.

[17]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[18]  R. Pepperkok,et al.  Observing proteins in their natural habitat: the living cell. , 2000, Trends in biochemical sciences.

[19]  T M Jovin,et al.  FRET microscopy demonstrates molecular association of non‐specific lipid transfer protein (nsL‐TP) with fatty acid oxidation enzymes in peroxisomes , 1998, The EMBO journal.

[20]  Maria Carmo-Fonseca,et al.  A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. , 2007, Biophysical journal.

[21]  Ignacio A. Demarco,et al.  Quantitative imaging of protein interactions in the cell nucleus. , 2005, BioTechniques.

[22]  A. Nakano Spinning-disk confocal microscopy -- a cutting-edge tool for imaging of membrane traffic. , 2002, Cell structure and function.

[23]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[24]  B. Reid,et al.  Chromophore formation in green fluorescent protein. , 1997, Biochemistry.

[25]  Vladislav V Verkhusha,et al.  Conversion of the monomeric red fluorescent protein into a photoactivatable probe. , 2005, Chemistry & biology.

[26]  N. Daigle,et al.  An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells , 2001, The Journal of cell biology.

[27]  Jan Ellenberg,et al.  Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. , 2006, Biophysical journal.

[28]  F. Wouters,et al.  Imaging biochemistry inside cells. , 2001, Trends in cell biology.

[29]  George H Patterson,et al.  Photobleaching and photoactivation: following protein dynamics in living cells. , 2003, Nature cell biology.

[30]  F. G. Prendergast,et al.  Biophysics of the green fluorescent protein. , 1999, Methods in cell biology.

[31]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[32]  W. Webb,et al.  Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. , 1999, Biophysical journal.

[33]  B. Herman,et al.  Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. , 1998, Biophysical journal.

[34]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[35]  R. Day,et al.  Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. , 1998, Molecular endocrinology.

[36]  Maria Carmo-Fonseca,et al.  Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. , 2004, Molecular biology of the cell.

[37]  S. Lukyanov,et al.  Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2 , 2007, Nature Protocols.

[38]  N. Chaffey Red fluorescent protein , 2001 .

[39]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[40]  Tom Misteli,et al.  Maintenance of Stable Heterochromatin Domains by Dynamic HP1 Binding , 2003, Science.

[41]  R. Peters,et al.  Molecular mobility and nucleocytoplasmic flux in hepatoma cells , 1986, The Journal of cell biology.

[42]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[43]  A. Don,et al.  Fluorescence photobleaching recovery in the confocal scanning light microscope , 1993 .

[44]  Christian Eggeling,et al.  1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. , 2007, The Biochemical journal.

[45]  V. Verkhusha,et al.  Photoactivatable fluorescent proteins , 2005, Nature Reviews Molecular Cell Biology.

[46]  R. Cone Rotational diffusion of rhodopsin in the visual receptor membrane. , 1972, Nature: New biology.

[47]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[48]  H. Woitge,et al.  Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. , 2004, The International journal of developmental biology.

[49]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[50]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[51]  C. Murphy,et al.  Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle , 2003, The Journal of cell biology.

[52]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[53]  V. Verkhusha,et al.  Innovation: Photoactivatable fluorescent proteins. , 2005, Nature reviews. Molecular cell biology.

[54]  E. Kollar,et al.  Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col1a1-2.3-GFP transgene. , 2003, The International journal of developmental biology.

[55]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[56]  J. McNally,et al.  The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. , 2000, Science.

[57]  V. Verkhusha,et al.  Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light , 2006, Nature Biotechnology.

[58]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[59]  K. Braeckmans,et al.  Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. , 2003, Biophysical journal.

[60]  A. Lamond,et al.  Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. , 2001, Journal of cell science.

[61]  M Edidin,et al.  Measurement of membrane protein lateral diffusion in single cells. , 2003, Science.

[62]  K. Fujita [Two-photon laser scanning fluorescence microscopy]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[63]  M. J. Moné,et al.  Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions , 2003, Molecular and Cellular Biology.

[64]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[65]  M. Carmo-Fonseca,et al.  Dynamic association of RNA-editing enzymes with the nucleolus , 2003, Journal of Cell Science.

[66]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[67]  S. Farivar,et al.  X-chromosome inactivation in differentiating mouse embryonic stem cells carrying X-linked GFP and lacZ transgenes. , 2004, The International journal of developmental biology.

[68]  Paul R. Selvin,et al.  The renaissance of fluorescence resonance energy transfer , 2000, Nature Structural Biology.

[69]  Horst Wallrabe,et al.  Imaging protein molecules using FRET and FLIM microscopy. , 2005, Current opinion in biotechnology.

[70]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[71]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[72]  Petra Schwille,et al.  Fluorescence correlation spectroscopy and its potential for intracellular applications , 2007, Cell Biochemistry and Biophysics.

[73]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[74]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[75]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[76]  Gustavo Carrero,et al.  Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. , 2003, Methods.

[77]  E. Stelzer The Intermediate Optical System of Laser-Scanning Confocal Microscopes , 2006 .

[78]  A. Roberts,et al.  New tools for in vivo fluorescence tagging. , 2005, Current opinion in plant biology.

[79]  P. Verveer,et al.  High-resolution three-dimensional imaging of large specimens with light sheet–based microscopy , 2007, Nature Methods.

[80]  Adriaan B. Houtsmuller,et al.  Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching , 2001, Histochemistry and Cell Biology.

[81]  P. Bastiaens,et al.  Three dimensional image restoration in fluorescence lifetime imaging microscopy , 1999, Journal of microscopy.

[82]  A. Kenworthy,et al.  Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. , 2005, Methods.

[83]  G. de Vries,et al.  Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations , 2006, The Journal of cell biology.

[84]  T M Jovin,et al.  Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation , 1995, The Journal of cell biology.

[85]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Hiroshi Kimura,et al.  Kinetics of Core Histones in Living Human Cells , 2001, The Journal of cell biology.

[88]  Rudolf Rigler,et al.  Fluorescence correlation spectroscopy of molecular motions and kinetics. , 2005, Advanced drug delivery reviews.

[89]  M. Carmo-Fonseca,et al.  In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1. , 2005, RNA.

[90]  Joachim Goedhart,et al.  UvA-DARE ( Digital Academic Repository ) Optimization of fluorescent proteins for novel quantitative multiparameter microscopy approaches , 2007 .

[91]  Stephen J. Lockett,et al.  Intensity-based energy transfer measurements in digital imaging microscopy , 1998, European Biophysics Journal.

[92]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[93]  Michael Bustin,et al.  Dynamic interaction of HMGA1a proteins with chromatin , 2004, Journal of Cell Science.

[94]  J. Gall,et al.  Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  R Y Tsien,et al.  Understanding, improving and using green fluorescent proteins. , 1995, Trends in biochemical sciences.

[96]  A. Kenworthy,et al.  Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. , 2001, Methods.

[97]  J. Eisman,et al.  FRAP analysis of nucleocytoplasmic dynamics of the vitamin D receptor splice variant VDRB1: preferential targeting to nuclear speckles. , 2005, The Biochemical journal.

[98]  T M Jovin,et al.  Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. , 1996, The EMBO journal.

[99]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[100]  R. Heim,et al.  Using GFP in FRET-based applications. , 1999, Trends in cell biology.

[101]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[102]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[103]  José-Angel Conchello,et al.  Fluorescence microscopy , 2005, Nature Methods.

[104]  Petra Schwille,et al.  Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. , 2005, Biophysical journal.

[105]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[106]  Wedekind,et al.  Three‐dimensional diffusion measurements by scanning microphotolysis , 1998 .

[107]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[108]  Rafael Yuste,et al.  Fluorescence microscopy today , 2005, Nature Methods.

[109]  F. Wouters,et al.  Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells , 1999, Current Biology.

[110]  T. Martin,et al.  Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules. , 2002, Molecular endocrinology.

[111]  Y. Liu,et al.  Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. , 2001, Biophysical journal.

[112]  M. Ikura,et al.  The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. , 2001, Current opinion in structural biology.

[113]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[114]  Oliver Griesbeck,et al.  Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP , 2003, BMC biotechnology.

[115]  K. Braeckmans,et al.  Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation--a case study for fluorescein. , 2006, Journal of biomedical optics.

[116]  Andrew L. Miller,et al.  Transient expression of apoaequorin in zebrafish embryos: extending the ability to image calcium transients during later stages of development. , 2006, The International journal of developmental biology.

[117]  F. Boisvert,et al.  The Transcription Coactivator Cbp Is a Dynamic Component of the Promyelocytic Leukemia Nuclear Body , 2001, The Journal of cell biology.

[118]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[119]  R. Tsien Building and breeding molecules to spy on cells and tumors , 2005, FEBS letters.

[120]  A. Houtsmuller,et al.  Action of DNA repair endonuclease ERCC1/XPF in living cells. , 1999, Science.

[121]  J. Ellenberg,et al.  Dynamics of nuclear pore complex organization through the cell cycle. , 2004, Current opinion in cell biology.

[122]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[123]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[124]  Petra Schwille,et al.  A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. , 2003, Methods.

[125]  T. Misteli,et al.  A Kinetic Framework for a Mammalian RNA Polymerase in Vivo , 2002, Science.

[126]  R. Peters,et al.  A microfluorimetric study of translational diffusion in erythrocyte membranes. , 1974, Biochimica et biophysica acta.

[127]  Y. K. Levine,et al.  Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. , 1995, Analytical biochemistry.

[128]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.