Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions

We consider the following allocation problem arising in the setting of combinatorial auctions: a set of goods is to be allocated to a set of players so as to maximize the sum of the utilities of the players (i.e., the social welfare). In the case when the utility of each player is a monotone submodular function, we prove that there is no polynomial time approximation algorithm which approximates the maximum social welfare by a factor better than 1–1/e ≃ 0.632, unless P = NP. Our result is based on a reduction from a multi-prover proof system for MAX-3-COLORING.

[1]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[2]  Noam Nisan,et al.  Incentive compatible multi unit combinatorial auctions , 2003, TARK '03.

[3]  Noam Nisany,et al.  The Communication Requirements of E¢cient Allocations and Supporting Lindahl Prices¤ , 2003 .

[4]  Yoav Shoham,et al.  Truth revelation in approximately efficient combinatorial auctions , 2002, EC '99.

[5]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[6]  Aranyak Mehta,et al.  Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions , 2007, Algorithmica.

[7]  Yishay Mansour,et al.  Auctions with Budget Constraints , 2004, SWAT.

[8]  Torben Hagerup,et al.  Algorithm Theory - SWAT 2004 , 2004, Lecture Notes in Computer Science.

[9]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[10]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[11]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[12]  Noam Nisan,et al.  Approximation algorithms for combinatorial auctions with complement-free bidders , 2005, STOC '05.

[13]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[14]  Erez Petrank The hardness of approximation: Gap location , 2005, computational complexity.

[15]  Noam Nisan,et al.  On the computational power of iterative auctions , 2005, EC '05.

[16]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[17]  U. Feige,et al.  The allocation problem with submodular utility functions (preliminary version) , 2006 .

[18]  Ennio Stacchetti,et al.  The English Auction with Differentiated Commodities , 2000, J. Econ. Theory.

[19]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[20]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[21]  Noam Nisan,et al.  Truthful randomized mechanisms for combinatorial auctions , 2006, STOC '06.

[22]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[23]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[24]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[25]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[26]  Moshe Tennenholtz,et al.  Bundling equilibrium in combinatorial auctions , 2002, Games Econ. Behav..

[27]  Y. Shoham,et al.  Truth revelation in rapid, approximately efficient combinatorial auctions , 2001 .

[28]  Uriel Feige,et al.  Approximating the domatic number , 2000, STOC '00.

[29]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[30]  N. Nisan,et al.  On the Computational Power of Iterative Auctions I: Demand Queries , 2005 .

[31]  N. S. Barnett,et al.  Private communication , 1969 .

[32]  Shahar Dobzinski,et al.  An improved approximation algorithm for combinatorial auctions with submodular bidders , 2006, SODA '06.