Practical strategies for enhancing the valley splitting in Si/SiGe quantum wells

Silicon/silicon-germanium heterostructures have many important advantages for hosting spin qubits. However, controlling the valley splitting (the energy splitting between the two low-lying conduction-band valleys) remains a critical challenge for ensuring qubit reliability. Broad distributions of valley splittings are commonplace, even among quantum dots formed on the same chip. In this work, we theoretically explore the interplay between quantum-well imperfections that suppress the valley splitting and cause variability, such as broadened interfaces and atomic steps at the interface, while self-consistently accounting for germanium concentration fluctuations. We consider both conventional and unconventional approaches for controlling the valley splitting, and present concrete strategies for implementing them. Our results provide a clear path for achieving qubit uniformity in a scalable silicon quantum computer.

[1]  R. Joynt,et al.  Enhanced valley splitting in Si layers with oscillatory Ge concentration , 2022, Physical Review B.

[2]  M. Lagally,et al.  SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits , 2021, Nature communications.

[3]  S. Coppersmith,et al.  Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots , 2021, Nature Communications.

[4]  J. Petta,et al.  Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.

[5]  G. Wang,et al.  Origin of giant valley splitting in silicon quantum wells induced by superlattice barriers , 2021, Physical Review B.

[6]  G. Burkard,et al.  Relaxation of single-electron spin qubits in silicon in the presence of interface steps , 2021, Physical Review B.

[7]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[8]  Xuedong Hu,et al.  Impact of the valley orbit coupling on exchange gate for spin qubits in silicon , 2021, npj Quantum Information.

[9]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.

[10]  S. Coppersmith,et al.  Charge-Noise Resilience of Two-Electron Quantum Dots in Si/SiGe Heterostructures. , 2021, Physical review letters.

[11]  S. Coppersmith,et al.  Strong electron-electron interactions in Si/SiGe quantum dots , 2021, Physical Review B.

[12]  J. Petta,et al.  Cryogen-free scanning gate microscope for the characterization of Si/Si0.7Ge0.3 quantum devices at milli-Kelvin temperatures , 2021, AIP Advances.

[13]  M. Lagally,et al.  Valley splittings in Si/SiGe quantum dots with a germanium spike in the silicon well , 2021, Physical Review B.

[14]  S. Coppersmith,et al.  How Valley-Orbit States in Silicon Quantum Dots Probe Quantum Well Interfaces. , 2021, Physical review letters.

[15]  Edward H. Chen,et al.  Detuning Axis Pulsed Spectroscopy of Valley-Orbital States in Si / Si - Ge Quantum Dots , 2020, 2010.04818.

[16]  G. Burkard,et al.  Electromagnetic control of valley splitting in ideal and disordered Si quantum dots , 2020, Physical Review Research.

[17]  H. Riemann,et al.  Large, Tunable Valley Splitting and Single-Spin Relaxation Mechanisms in a Si / Six Ge1−x Quantum Dot , 2019, Physical Review Applied.

[18]  Xuedong Hu,et al.  Effects of interface steps on the valley-orbit coupling in a Si/SiGe quantum dot , 2019, Physical Review B.

[19]  Guang-Can Guo,et al.  Semiconductor quantum computation , 2018, National science review.

[20]  J. Petta,et al.  Single-Spin Relaxation in a Synthetic Spin-Orbit Field , 2018, Physical Review Applied.

[21]  J. R. Petta,et al.  Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots , 2018, Physical Review B.

[22]  R. H. Foote,et al.  Signatures of atomic-scale structure in the energy dispersion and coherence of a Si quantum-dot qubit , 2018, Physical Review B.

[23]  H. Bluhm,et al.  Calculation of tunnel couplings in open gate-defined disordered quantum dot systems , 2018, Physical Review B.

[24]  Thomas McJunkin,et al.  The critical role of substrate disorder in valley splitting in Si quantum wells , 2018, Applied Physics Letters.

[25]  D. Leonard,et al.  Accurate Quantification of Si/SiGe Interface Profiles via Atom Probe Tomography , 2017 .

[26]  X Mi,et al.  High-Resolution Valley Spectroscopy of Si Quantum Dots. , 2017, Physical review letters.

[27]  M. Lagally,et al.  Valley dependent anisotropic spin splitting in silicon quantum dots , 2017, npj Quantum Information.

[28]  Erik Nielsen,et al.  Valley splitting of single-electron Si MOS quantum dots , 2016, 1610.03388.

[29]  M. Lagally,et al.  Dressed photon-orbital states in a quantum dot: Intervalley spin resonance , 2016, 1608.06538.

[30]  D. Culcer,et al.  Control of valley dynamics in silicon quantum dots in the presence of an interface step , 2016, 1604.07258.

[31]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[32]  J. Moussa,et al.  Multivalley effective mass theory simulation of donors in silicon , 2014, 1408.3159.

[33]  S. Coppersmith,et al.  Disorder-induced valley-orbit hybrid states in Si quantum dots , 2013, 1305.0488.

[34]  Alex Zunger,et al.  Genetic design of enhanced valley splitting towards a spin qubit in silicon , 2013, Nature Communications.

[35]  Zhan Shi,et al.  Tunable singlet-triplet splitting in a few-electron Si/SiGe quantum dot , 2011, 1109.0511.

[36]  R. S. Ross,et al.  Measurement of valley splitting in high-symmetry Si/SiGe quantum dots , 2010, 1012.1363.

[37]  B. Koiller,et al.  Extended interface states enhance valley splitting in Si/SiO 2 , 2010, 1009.4842.

[38]  S. Sarma,et al.  Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots , 2010, 1006.5448.

[39]  S. Sarma,et al.  Intervalley coupling for interface-bound electrons in silicon: An effective mass study , 2010, 1006.3338.

[40]  S. N. Coppersmith,et al.  Theory of valley-orbit coupling in a Si/SiGe quantum dot , 2009, 0902.0777.

[41]  S. Coppersmith,et al.  Multiscale theory of valley splitting in the conduction band of a quantum well , 2008, 0801.1316.

[42]  G. Klimeck,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part II: Applications , 2007, IEEE Transactions on Electron Devices.

[43]  T. Boykin,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part I: Models and Benchmarks , 2007, IEEE Transactions on Electron Devices.

[44]  Gerhard Klimeck,et al.  Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder , 2007 .

[45]  S. Coppersmith,et al.  Controllable valley splitting in silicon quantum devices , 2006, cond-mat/0611221.

[46]  S. Coppersmith,et al.  Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells , 2006, cond-mat/0608229.

[47]  S. Coppersmith,et al.  Magnetic field dependence of valley splitting in realistic Si∕SiGe quantum wells , 2006, cond-mat/0602194.

[48]  Gerhard Klimeck,et al.  Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models , 2004 .

[49]  T. Boykin,et al.  Valley splitting in strained silicon quantum wells , 2003, cond-mat/0309663.

[50]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[51]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[52]  Santiago Aja-Fernández,et al.  Statistical Analysis of Noise in MRI , 2016, Springer International Publishing.

[53]  J. Verduijn Silicon Quantum Electronics , 2012 .

[54]  W. Marsden I and J , 2012 .

[55]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .