Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral?faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions.

[1]  V Capasso,et al.  Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases , 1981, Journal of mathematical biology.

[2]  Yi A. Li,et al.  Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities , 2008 .

[3]  Karl Kunisch,et al.  A reaction-diffusion system arising in modelling man-environment diseases , 1988 .

[4]  Abstract evolution equations , 1969 .

[5]  Cheng-Hsiung Hsu,et al.  Existence and multiplicity of traveling waves in a lattice dynamical system , 2000 .

[6]  Xiao-Qiang Zhao,et al.  Bistable Waves in an Epidemic Model , 2004 .

[7]  Henri Berestycki,et al.  Traveling Wave Solutions to Combustion Models and Their Singular Limits , 1985 .

[8]  Ingemar Nåsell,et al.  The transmission dynamics of schistosomiasis , 1973 .

[9]  O. Diekmann,et al.  On the bounded solutions of a nonlinear convolution equation , 1978 .

[10]  Vincenzo Capasso,et al.  Topics in spatial stochastic processes , 2003 .

[11]  Vincenzo Capasso,et al.  Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics , 1997, SIAM J. Appl. Math..

[12]  Jack Carr,et al.  Uniqueness of travelling waves for nonlocal monostable equations , 2004 .

[13]  Wan-Tong Li,et al.  Monotonicity and uniqueness of traveling waves for a reaction–diffusion model with a quiescent stage ☆ , 2010 .

[14]  Xinfu Chen,et al.  Uniqueness and Asymptotics of Traveling Waves of Monostable Dynamics on Lattices , 2006, SIAM J. Math. Anal..

[15]  Lucia Maddalena,et al.  Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models , 1982 .

[16]  Shiwang Ma,et al.  Traveling Wavefronts for Delayed Reaction-Diffusion Systems via a Fixed Point Theorem , 2001 .

[17]  V. Capasso,et al.  A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. , 1979, Revue d'epidemiologie et de sante publique.

[18]  Xiao-Qiang Zhao,et al.  Fisher waves in an epidemic model , 2004 .