A multisource energy harvesting utilizing highly efficient ferroelectric PMN-PT single crystal

[1]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[2]  X. Tang,et al.  Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics , 2016 .

[3]  S. Olutunde Oyadiji,et al.  Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters , 2015 .

[4]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[5]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .

[6]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[7]  Qifa Zhou,et al.  PMN-PT single-crystal high-frequency kerfless phased array , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[8]  Wen-Yang Chang,et al.  ELECTROMECHANICAL CHARACTERISTICS OF POLYVINYLIDENE FLUORIDE FOR FLEXIBLE ELECTRONICS , 2013 .

[9]  Jeff Leadbetter,et al.  The design of ultrasonic lead magnesium niobate-lead titanate (PMN-PT) composite transducers for power and signal delivery to implanted hearing aids , 2013 .

[10]  S. Priya,et al.  Piezoelectric MEMS for energy harvesting , 2012 .

[11]  Yong Zhang,et al.  A model for the energy harvesting performance of shear mode piezoelectric cantilever , 2012 .

[12]  Sanjib Kumar Panda,et al.  Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes , 2011, IEEE Transactions on Industrial Electronics.

[13]  M. Kosec,et al.  Relaxor-ferroelectric PMN–PT Thick Films , 2011 .

[14]  Sang Kyun Lee,et al.  Analysis of Vibration-energy-harvesting Devices based on a Piezoelectric Single Crystal Beam , 2011 .

[15]  D. Hsu,et al.  Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications. , 2010, Ultrasonics.

[16]  Wei Wang,et al.  Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever , 2010 .

[17]  Sung Q Lee,et al.  Sustainable Vibration Energy Harvesting Based on Zr‐Doped PMN‐PT Piezoelectric Single Crystal Cantilevers , 2009 .

[18]  Norman M. Wereley,et al.  Energy Harvesting Utilizing Single Crystal PMN-PT Material and Application to a Self-Powered Accelerometer , 2009 .

[19]  Qing-Ming Wang,et al.  Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) Device , 2009 .

[20]  D. Inman,et al.  Power generation and shunt damping performance of a single crystal lead magnesium niobate-lead zirconate titanate unimorph: Analysis and experiment , 2008 .

[21]  M. D. Aggarwal,et al.  Growth and electrical characterization of the lead magnesium niobate-lead titanate (PMN-PT) single crystals for piezoelectric devices , 2008 .

[22]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[23]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[24]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Yiming Liu,et al.  Single crystal PMN-PT/Epoxy 1-3 composite for energy-harvesting application , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  S. Priya Modeling of electric energy harvesting using piezoelectric windmill , 2005 .

[27]  V. Giurgiutiu Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring , 2005 .

[28]  Xiaofeng Wang,et al.  Growth and electrical properties of Pb(In0.5Nb0.5)O3–PbTiO3 crystals by the solution Bridgman method , 2005 .

[29]  P. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[30]  Kee S. Moon,et al.  Fabrication of a piezoelectric biosensor based on a PZN-PT/PMN-PT single crystal thin film , 2004, SPIE Optics East.

[31]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal , 2004 .

[32]  F. Chang,et al.  Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics , 2004 .

[33]  C. H. Park,et al.  Dynamics modelling of beams with shunted piezoelectric elements , 2003 .

[34]  Sang-goo Lee,et al.  Segregation during the vertical Bridgman growth of lead magnesium niobate–lead titanate single crystals , 2003 .

[35]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[36]  Yiping Guo,et al.  Growth and electrical properties of Pb(Sc1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystals by a modified Bridgman technique , 2001 .

[37]  Haisheng Xu,et al.  High-dielectric-constant ceramic-powder polymer composites , 2000 .

[38]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  A. Bhalla,et al.  Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 1989 .

[40]  R. Kazys,et al.  Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers☆ , 2015 .

[41]  Chunsheng Yang,et al.  Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film , 2014 .

[42]  Karla Mossi,et al.  SCAVENGING ENERGY FROM PIEZOELECTRIC MATERIALS FOR WIRELESS SENSOR APPLICATIONS , 2005 .

[43]  S. Priya,et al.  Piezoelectric Windmill: A Novel Solution to Remote Sensing , 2004 .