Learning video preferences from video content

Viewers of video now have more choices than ever. As the number of choices increases, the task of searching through these choices to locate video of interest is becoming more difficult. Current methods for learning a viewer's preferences in order to automate the search process rely either on video having content descriptions or on having been rated by other viewers identified as being similar. However, much video exists that does not meet these requirements. To address this need, we use hidden Markov models to learn the preferences of a viewer by combining visual features and closed captions. Results are provided from some initial experiments using this approach.

[1]  W. Krzanowski,et al.  A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering , 1988 .

[2]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[3]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[4]  Zhu Liu,et al.  Integration of multimodal features for video scene classification based on HMM , 1999, 1999 IEEE Third Workshop on Multimedia Signal Processing (Cat. No.99TH8451).

[5]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[6]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[7]  Fabio Bellifemine,et al.  User Modeling and Recommendation Techniques for Personalized Electronic Program Guides , 2004, Personalized Digital Television.

[8]  Rainer Lienhart,et al.  Comparison of automatic shot boundary detection algorithms , 1998, Electronic Imaging.

[9]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[10]  Christos Faloutsos,et al.  Example-based robust outlier detection in high dimensional datasets , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  Mark S. Drew,et al.  Video keyframe production by efficient clustering of compressed chromaticity signatures (poster session) , 2000, ACM Multimedia.

[12]  Diane J. Cook,et al.  Using Closed Captions and Visual Features to Classify Movies by Genre , 2006 .

[13]  David Salesin,et al.  Fast multiresolution image querying , 1995, SIGGRAPH.

[14]  Carla E. Brodley,et al.  Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach , 2003, ICML.

[15]  Angel R. Martinez,et al.  : Exploratory data analysis with MATLAB ® , 2007 .

[16]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[17]  André Hardy,et al.  An examination of procedures for determining the number of clusters in a data set , 1994 .

[18]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[19]  David S. Doermann,et al.  Sports video classification using HMMS , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[20]  Clement T. Yu,et al.  Techniques and Systems for Image and Video Retrieval , 1999, IEEE Trans. Knowl. Data Eng..

[21]  John M. Gauch,et al.  The VISION Digital Video Library Project , 1998 .

[22]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[23]  Barry Smyth,et al.  Surfing the Digital Wave , 1999, ICCBR.

[24]  Wei-Hao Lin,et al.  News video classification using SVM-based multimodal classifiers and combination strategies , 2002, MULTIMEDIA '02.

[25]  Sanjoy Dasgupta,et al.  Experiments with Random Projection , 2000, UAI.

[26]  George Forman,et al.  An Extensive Empirical Study of Feature Selection Metrics for Text Classification , 2003, J. Mach. Learn. Res..

[27]  Charles A. Poynton,et al.  A technical introduction to digital video , 1996 .

[28]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[29]  Barry Smyth,et al.  Surfing the Digital Wave Generating Personalised TV Listings using Collaborative, Case-Based Recommendation , 1999 .

[30]  Weiyu Zhu,et al.  Automatic news video segmentation and categorization based on closed-captioned text , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[31]  Zhu Liu,et al.  Classification TV programs based on audio information using hidden Markov model , 1998, 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175).

[32]  Gary D. Robson The closed captioning handbook , 2004 .

[33]  Cheng Lu,et al.  Classification of summarized videos using hidden markov models on compressed chromaticity signatures , 2001, MULTIMEDIA '01.

[34]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[35]  Gang Wei,et al.  Video classification based on HMM using text and faces , 2000, 2000 10th European Signal Processing Conference.

[36]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .