Temperature dependence of CsI:Tl coupled to a PIN photodiode and a silicon photomultiplier

[1]  Qingyang Wei,et al.  Development of a compact DOI–TOF detector module for high-performance PET systems , 2017 .

[2]  K. Yue,et al.  Temperature dependence of the plastic scintillator detector for DAMPE , 2016, 1612.03398.

[3]  S. Gupta,et al.  Multi-channel programmable power supply with temperature compensation for silicon sensors. , 2016, The Review of scientific instruments.

[4]  Cristoforo Marzocca,et al.  An Active Compensation System for the Temperature Dependence of SiPM Gain , 2015, IEEE Transactions on Nuclear Science.

[5]  F. Giovacchini Performance in space of the AMS-02 RICH detector , 2014 .

[6]  G. Reitz,et al.  A Small Active Dosimeter for Applications in Space , 2014 .

[7]  S. Dugad,et al.  A Survey of Power Supply Techniques for Silicon Photo-Multiplier Biasing , 2014 .

[8]  M. Moszynski,et al.  Characterization of CsI:Tl at a wide temperature range (−40 °C to +22 °C) , 2013 .

[9]  M. Moszynski,et al.  Energy resolution of small scintillation detectors with SiPM light readout , 2013 .

[10]  M Grodzicka,et al.  Characterization of 2 × 2 ch MPPC array over a wide temperature range (−20°C to +21°C) , 2013 .

[11]  M. Moszynski,et al.  MPPC Array in the Readout of CsI:Tl, LSO:Ce:Ca, LaBr$_{3}\!$:Ce, and BGO Scintillators , 2012, IEEE Transactions on Nuclear Science.

[12]  C. Cheikali,et al.  Temperature and bias voltage dependence of the MPPC detectors , 2010, IEEE Nuclear Science Symposuim & Medical Imaging Conference.

[13]  B. G. Lowe,et al.  A measurement of the electron–hole pair creation energy and the Fano factor in silicon for 5.9 keV X-rays and their temperature dependence in the range 80–270 K , 2007 .

[14]  V. V. Sidorkin,et al.  Design, commissioning and performance of the PIBETA detector at PSI , 2003, hep-ex/0312017.

[15]  V. Bidoli,et al.  Study of the radiation environment on MIR space station with SILEYE-2 experiment. , 2003, Advances in space research : the official journal of the Committee on Space Research.

[16]  G. Badhwar,et al.  Response of silicon-based linear energy transfer spectrometers: implication for radiation risk assessment in space flights. , 2001, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[17]  The Babar Collaboration,et al.  The BABAR Detector , 2001, hep-ex/0105044.

[18]  D. Ramsden,et al.  The optimisation of CsI(Tl)—PIN photodiode detectors , 1994 .

[19]  W. Moses,et al.  Temperature dependence of CSl(TI) gamma-ray excited scintillationcharacteristics , 1993 .

[20]  D. Wehe,et al.  Temperature dependence of absolute CsI(Tl) scintillation yield , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[21]  R. Kotthaus,et al.  Prospects of CsI(Tl)-photodiode detectors for low-level spectroscopy , 1990 .

[22]  Masaaki Kobayashi,et al.  Temperature dependence of CsI(Tl) scintillation yield for cosmic muons, 5 and 1.25 MeV γ-rays , 1989 .

[23]  G. Eigen,et al.  IMPROVEMENTS IN PHOTODIODE READOUT FOR SMALL CsI(Tl) CRYSTALS , 1985 .