A Gallery of Chua attractors Part V

Chua Oscillator and its generalizations display a variety of chaotic behaviors, whose most startling manifestation is the presence of strange attractors. These come in many different shapes and siz...

[1]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[2]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[3]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[4]  Alfred Inselberg,et al.  Don't panic ... just do it in parallel! , 1999, Comput. Stat..

[5]  Leon O. Chua,et al.  The double scroll , 1985 .

[6]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[7]  Leon O. Chua,et al.  Global unfolding of Chua's circuit , 1993 .

[8]  TAO YANG,et al.  Piecewise-Linear Chaotic Systems with a Single equilibrium Point , 2000, Int. J. Bifurc. Chaos.

[9]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[10]  ELEONORA BILOTTA,et al.  Structural and functional growth in self-reproducing cellular automata , 2006, Complex..

[11]  Eleonora Bilotta,et al.  Reading Complexity in Chua's oscillator through Music. Part I: a New Way of Understanding Chaos , 2005, Int. J. Bifurc. Chaos.

[12]  Eleonora Bilotta,et al.  Computer graphics meets chaos and hyperchaos. Some key problems , 2006, Comput. Graph..

[13]  Eleonora Bilotta,et al.  Searching for complex CA rules with GAs , 2003, Complex..

[14]  O. Rössler An equation for hyperchaos , 1979 .

[15]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[16]  Guo-Qun Zhong,et al.  Periodicity and Chaos in Chua's Circuit , 1985 .

[17]  L. Chua,et al.  The double scroll family , 1986 .

[18]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[19]  J. Suykens,et al.  Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit , 2000 .

[20]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[21]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .

[22]  Michael Peter Kennedy,et al.  Three steps to chaos. I. Evolution , 1993 .

[23]  Robert M. O'Keefe,et al.  Visual Interactive Simulation — History, recent developments, and major issues , 1987, Simul..

[24]  Leon O. Chua,et al.  Reality of chaos in the double scroll circuit: A computer-assisted proof , 1988 .

[25]  Leon O. Chua,et al.  Torus-doubling bifurcations in four mutually coupled Chua's circuits , 1998 .

[26]  Paul R. Kinnear,et al.  Skill in Map Reading and Memory for Maps , 1988 .

[27]  Johan A. K. Suykens,et al.  n-scroll chaos generators: a simple circuit model , 2001 .

[28]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[30]  L. Chua,et al.  A universal circuit for studying and generating chaos. II. Strange attractors , 1993 .

[31]  Yoshinori Dobashi,et al.  Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics , 2003, ACM Trans. Graph..

[32]  L. Chua,et al.  GLOBAL BIFURCATION ANALYSIS OF THE DOUBLE SCROLL CIRCUIT , 1991 .

[33]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[34]  P. Arena,et al.  Chua's circuit can be generated by CNN cells , 1995 .

[35]  Eleonora Bilotta,et al.  Life-like self-reproducers , 2003, Complex..

[36]  L. Shilnikov Chua's circuit: rigorous results and future problems , 1993 .

[37]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[38]  S. Smale,et al.  Structurally Stable Systems are not Dense , 1966 .

[39]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[40]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.

[41]  Leon O. Chua,et al.  ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .

[42]  Ahmed S. Elwakil,et al.  n-scroll chaos generator using nonlinear transconductor , 2002 .

[43]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[44]  Michael Peter Kennedy,et al.  Robust OP Amp Realization of Chua's Circuit , 1992 .

[45]  L. Chua,et al.  Experimental hyperchaos in coupled Chua's circuits , 1994 .

[46]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[47]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[48]  E. J. Altman,et al.  Normal form analysis of Chua's circuit with applications for trajectory recognition , 1993 .

[49]  Eleonora Bilotta,et al.  Emergent Patterning Phenomena in 2D Cellular Automata , 2005, Artificial Life.

[50]  P. Arena,et al.  Generation of n-double scrolls via cellular neural networks , 1996, Int. J. Circuit Theory Appl..

[51]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[52]  Eleonora Bilotta,et al.  The Language of Chaos , 2006, Int. J. Bifurc. Chaos.

[53]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .