Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ

This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well-known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton-techniques.

[1]  Stephen J. Wright,et al.  Properties of the Log-Barrier Function on Degenerate Nonlinear Programs , 2002, Math. Oper. Res..

[2]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[3]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[4]  Osman Güler,et al.  Limiting behavior of weighted central paths in linear programming , 1994, Math. Program..

[5]  Bernd Kummer,et al.  Parametrizations of Kojima’s system and relations to penalty and barrier functions , 1997, Math. Program..

[6]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[7]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[8]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[9]  Christian Grossmann PENALTY/BARRIER PATH-FOLLOWING IN LINEARLY CONSTRAINED OPTIMIZATION , 2000 .

[10]  Ch. Grossmann,et al.  Sensitivität und Anwendbarkeit von Straf‐Barriere‐Methoden , 1977 .

[11]  Stephen J. Wright,et al.  Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints , 2000, Math. Oper. Res..

[12]  Christian Großmann,et al.  Strafmethoden und modifizierte Lagrange-Funktionen , 1993 .

[13]  Bernd Kummer,et al.  On solvability and regularity of a parametrized version of optimality conditions , 1995, Math. Methods Oper. Res..

[14]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[15]  František Nožička,et al.  Theorie der linearen Optimierung , 1972 .

[16]  Yin Zhang,et al.  On the convergence rate of Newton interior-point methods in the absence of strict complementarity , 1996, Comput. Optim. Appl..

[17]  Stephen J. Wright On the convergence of the Newton/log-barrier method , 2001, Math. Program..

[18]  Renato D. C. Monteiro,et al.  Limiting behavior of the affine scaling continuous trajectories for linear programming problems , 1991, Math. Program..

[19]  Jürgen Guddat,et al.  On the Role of the Mangasarian–Fromovitz Constraint Qualification for Penalty-, Exact Penalty-, and Lagrange Multiplier Methods , 1996 .

[20]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[21]  Stephen J. Wright Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear Programming , 2001, SIAM J. Optim..