Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy

We have analyzed the chemically and isotopically well-characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so-called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub-) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures.

[1]  F. Robert The D/H Ratio in Chondrites , 2003 .

[2]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[3]  B. Wopenka,et al.  Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison , 1995 .

[4]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[5]  E. Anders,et al.  Organic Compounds in Carbonaceous Chondrites. , 1965, Science.

[6]  I. Gilmour Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites , 2005 .

[7]  J. Pasteris,et al.  Raman spectra of graphite as indicators of degree of metamorphism , 1991 .

[8]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[9]  B. Wopenka Raman observations on individual interplanetary dust particles , 1988 .

[10]  M. Lindstrom Antarctic Meteorite Newsletter , 2000 .

[11]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[12]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[13]  R. Brunetto,et al.  Raman spectroscopy of ion irradiated diamond , 2004 .

[14]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[15]  R. Wieler,et al.  Trapping and Modification Processes of Noble Gases and Nitrogen in Meteorites and Their Parent Bodies , 2006 .

[16]  M. Zolensky,et al.  Weathering of Chondritic Meteorites , 2006 .

[17]  J. Hovenier,et al.  Carbon in the matrices of ordinary chondrites , 1993 .

[18]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components , 1995 .

[19]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[21]  F. Robert The D/H Ratio in Chondrites , 2003 .

[22]  E. Scott,et al.  DISENTANGLING NEBULAR AND ASTEROIDAL FEATURES OF CO3 CARBONACEOUS CHONDRITE METEORITES , 1990 .

[23]  John Robertson,et al.  Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon , 2001 .

[24]  J. Parnell,et al.  The alteration of organic matter in response to ionising irradiation: Chemical trends and implications for extraterrestrial sample analysis , 2006 .

[25]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[26]  S. Mostefaoui,et al.  Metal-associated carbon in primitive chondrites: structure, isotopic composition, and origin , 2000 .

[27]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites—VIII: Thermoluminescence and metamorphism in the CO chondrites , 1987 .

[28]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[29]  H. McSween,et al.  Structural deformation of the Leoville chondrite , 1986 .

[30]  G. Huss Genetic Relationships between Chondrules, Fine-grained Rims, and Interchondrule Matrix , 2006 .

[31]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[32]  E. Scott,et al.  Workshop on Chondrites and the Protoplanetary Disk , 2004 .

[33]  N. Everall,et al.  THE EFFECT OF LASER-INDUCED HEATING UPON THE VIBRATIONAL RAMAN SPECTRA OF GRAPHITES AND CARBON FIBRES , 1991 .

[34]  George D. Cody,et al.  Solid-state ( 1 H and 13 C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis , 2002 .

[35]  P. Raynal Etude en laboratoire de matière extraterrestre : implications pour la physico-chimie du Système Solaire primitif , 2003 .

[36]  J. Avouac,et al.  Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material , 2004 .

[37]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[38]  B. Jolliff,et al.  Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy , 2003 .

[39]  M. Zolensky,et al.  New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites , 1999 .

[40]  D. Heymann,et al.  Gas release and ordering of carbon in the Allende meteorite , 1987 .

[41]  D. Sears,et al.  Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites , 1991 .

[42]  L. Colangeli,et al.  Raman spectroscopy of ion irradiated amorphous carbons , 1996 .

[43]  E. Dartois,et al.  Ultraviolet photoproduction of ISM dust Laboratory characterisation and astrophysical relevance , 2005 .

[44]  I. Gilmour,et al.  1.10 – Structural and Isotopic Analysis of Organic Matter in Carbonaceous Chondrites , 2003 .

[45]  L. Nittler,et al.  Combined micro‐Raman, micro‐infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust , 2008 .

[46]  B. Fegley,et al.  Oxidation state in chondrites , 1988 .

[47]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[48]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[49]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[50]  Mireille Christophe Michel-Levy,et al.  Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite , 1981 .

[51]  D. Heymann,et al.  Carbon in dark inclusions of the Allende meteorite , 1986 .

[52]  A. Rubin,et al.  Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent‐body aqueous alteration , 2002 .

[53]  J William Schopf,et al.  Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils. , 2005, Astrobiology.

[54]  George J. Flynn,et al.  FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium , 2004 .

[55]  G. Flynn,et al.  The origin of organic matter in the solar system: Evidence from the interplanetary dust particles , 2003 .

[56]  Andrew Steele,et al.  Organics Captured from Comet Wild 2 by the Stardust Spacecraft , 2006 .

[57]  E. Anders,et al.  Host Phase of a Strange Xenon Component in Allende , 1975, Science.

[58]  D. Sears,et al.  Measuring metamorphic history of unequilibrated ordinary chondrites , 1980, Nature.

[59]  G. Baratta,et al.  A Raman study of ion irradiated icy mixtures , 2003 .

[60]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[61]  Edward R. D. Scott,et al.  Chondritic Meteorites and the High-Temperature Nebular Origins of Their Components , 2005 .

[62]  S. Messenger Identification of molecular-cloud material in interplanetary dust particles , 2000, Nature.

[63]  Kazuya Takahashi,et al.  Proper understanding of down-shifted Raman spectra of natural graphite: Direct estimation of laser-induced rise in sample temperature , 1994 .

[64]  M. Sephton,et al.  Molecular and isotopic indicators of alteration in CR chondrites , 2006 .

[65]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[66]  Gary R. Huss,et al.  Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.

[67]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[68]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[69]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[70]  M. Maurel,et al.  The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[71]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[72]  U. Ott,et al.  Noble-gas-rich separates from the Allende meteorite , 1981 .

[73]  D. Rubie,et al.  Thermal histories of CO3 chondrites: Application of olivine diffusion modelling to parent body metamorphism , 1991 .

[74]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[75]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[76]  Chris Jacobsen,et al.  The nature of molecular cloud material in interplanetary dust , 2004 .

[77]  I. Franchi,et al.  Alteration and metamorphism of CO3 chondrites: Evidence from oxygen and carbon isotopes , 2004 .

[78]  A. Kearsley,et al.  Clay mineral‐organic matter relationships in the early solar system , 2002 .

[79]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[80]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[81]  U. Ott Interstellar grains in meteorites , 1993, Nature.

[82]  G. Huss,et al.  Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins , 1994 .

[83]  M. Zadnik,et al.  Unequilibrated ordinary chondrites: A tentative subclassification based on volatile-element content , 1985 .

[84]  B. Marty,et al.  Interlayer trapping of noble gases in insoluble organic matter of primitive meteorites , 2005 .

[85]  François Robert,et al.  Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin? , 2006 .

[86]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[87]  A. Rubin,et al.  Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM , 2005 .

[88]  Michael E. Zolensky,et al.  Organic Globules in the Tagish Lake Meteorite: Remnants of the Protosolar Disk , 2006, Science.

[89]  E. Dartois,et al.  Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon , 2006 .

[90]  Michael E. Zolensky,et al.  Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions , 2002, International Journal of Astrobiology.

[91]  G. J. Flynn,et al.  The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles , 2006 .

[92]  G. Strazzulla,et al.  Vibrational spectroscopy of ion-irradiated ices. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[93]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[94]  P. Bland,et al.  Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism , 2004 .

[95]  A. Rubin,et al.  Dominion Range 03238: A Possible Missing Link in the Metamorphic Sequence of CO3 Chondrites , 2006 .

[96]  J. Pasteris,et al.  Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. , 2003, Astrobiology.

[97]  G. Huss,et al.  The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history , 1996 .

[98]  J. Borg,et al.  A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites , 2005 .

[99]  C. Pillinger,et al.  Carbon, nitrogen and hydrogen in Saharan chondrites: The importance of weathering , 1995 .

[100]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[101]  B Ervens,et al.  化学的水溶液相ラジカル機構(CAPRAM2.4(MODAC機構)) 拡大・要約対流圏水溶液相機構とその応用 , 2003 .

[102]  C. Pillinger,et al.  The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study , 1998, Meteoritics & planetary science.

[103]  H. Naraoka,et al.  A chemical sequence of macromolecular organic matter in the CM chondrites , 2004 .

[104]  E. Quirico,et al.  Metamorphic grade of organic matter in six unequilibrated ordinary chondrites , 2003 .

[105]  R. Kaindl,et al.  Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .