A study on the performance of natural neighbour‐based Galerkin methods

In this paper we address the problem of improving natural element simulations in terms of computational cost. Several problems are discussed, that include an efficient natural neighbour search algorithm and a comparison of different natural neighbour-based interpolation algorithms. In particular, we review the so-called pseudo-NEM, a moving least squares-like approximation scheme that employs natural neighbours, and compare it with traditional Sibson and Laplace interpolation schemes in terms of both accuracy and computational cost. Some examples in linear Elasticity and visco-plasticity are analysed in order to test the proposed schemes in engineering problems.

[1]  B.,et al.  Natural Neighbor Galerkin Methods , 2001 .

[2]  Francisco Chinesta,et al.  An Hybrid Element Free Galerkin and Natural Element Meshfree Method for Direct Imposition of Boundary Conditions and Faster Three-Dimensional Computations , 2005 .

[3]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[4]  O. C. Zienkiewicz,et al.  Flow of solids during forming and extrusion: Some aspects of numerical solutions , 1978 .

[5]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[6]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[7]  Jean B. Lasserre,et al.  An analytical expression and an algorithm for the volume of a convex polyhedron inRn , 1983 .

[8]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[9]  Jean Braun,et al.  A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.

[10]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[11]  E. Mucke Shapes and implementations in three-dimensional geometry , 1993 .

[12]  Manuel Doblaré,et al.  Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes , 2000 .

[13]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[14]  F. Chinesta,et al.  A new extension of the natural element method for non‐convex and discontinuous problems: the constrained natural element method (C‐NEM) , 2004 .

[15]  Miguel Ángel Martínez,et al.  Overview and recent advances in natural neighbour galerkin methods , 2003 .

[16]  J. Reddy,et al.  A three‐dimensional computational procedure for reproducing meshless methods and the finite element method , 2004 .

[17]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[18]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[19]  Icíar Alfaro,et al.  Three-dimensional simulation of aluminium extrusion by the α-shape based natural element method , 2006 .

[20]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[21]  Elías Cueto,et al.  Volumetric locking in natural neighbour Galerkin methods , 2004 .

[22]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[23]  Elías Cueto,et al.  Numerical integration in Natural Neighbour Galerkin methods , 2004 .

[24]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[26]  Hehua Zhu,et al.  A local search algorithm for natural neighbours in the natural element method , 2005 .

[27]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[28]  O. C. Zienkiewicz,et al.  Flow of plastic and visco‐plastic solids with special reference to extrusion and forming processes , 1974 .

[29]  Alberto Obrecht,et al.  Teoría de la elasticidad , 2022 .

[30]  Kokichi Sugihara,et al.  Two Generalizations of an Interpolant Based on Voronoi Diagrams , 1999, Int. J. Shape Model..

[31]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .