ON BOUNDARY CONDITIONS FOR MULTIDIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN THE FINITE VOLUME FRAMEWORK

This report presents a method for imposing boundary conditions in the context of hyperbolic systems of conservation laws in the finite volume framework. This method is particularly well suited for approximations in the framework of Finite Volume Methods in the sense that it computes directly the normal flux at the boundary with using just the hyperbolic nature of the system and nothing else. We discuss both linear and non linear problems. In the first group, we consider the wave equation, the Maxwell system and the linear elasticity problem. In the second group, we firstly study conservative systems as the magneto-hydrodynamic system, the Euler equations together with its classical reduced versions : isentropic, isothermal and shallow-water approximations and finally we consider complex (non conservative) models arising in the numerical computation of two fluid models. These latter systems initially motivated our approach. For each application, we analyze the hyperbolicity and write the eigensystem, then we present the so-called VFFC finite volume approach and provide at the discrete level a general theory for the boundary condition treatment. We analytically and numerically compare our treatment with the incomplete Riemann invariant technique. Finally we address practical issues and we present some numerical results. A last section is devoted to the widely studied one dimensional Euler equations for inviscid flow.

[1]  Miloslav Feistauer,et al.  Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems , 2002 .

[2]  F. John Finite amplitude waves in a homogeneous isotropic elastic solid , 1977 .

[3]  Jean-Marc Hérard,et al.  A sequel to a rough Godunov scheme: application to real gases , 2000 .

[4]  Paul Arminjon,et al.  A Mixed Finite Volume/Finite Element Method for 2-dimensional Compressible Navier-Stokes Equations on Unstructured Grids , 1999 .

[5]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[6]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[7]  A. Kumbaro,et al.  An Approximate Linearized Riemann Solver for a Two-Fluid Model , 1996 .

[8]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[9]  E. Oñate,et al.  Finite volumes and finite elements: Two ‘good friends’ , 1994 .

[10]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[11]  G Geymonat Partial Differential Equations of Hyperbolic Type and Applications , 1987 .

[12]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[13]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[14]  Eli Turkel,et al.  Review of preconditioning methods for fluid dynamics , 1993 .

[15]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[16]  Jean-Antoine Désidéri,et al.  Compressible flow solvers using unstructured grids , 1992 .

[17]  K. Powell Collocated Upwind Schemes for Ideal MHD , 2001 .

[18]  Eli Turkel,et al.  Assessment of Preconditioning Methods for Multidimensional Aerodynamics , 1997 .

[19]  Franccois Dubois,et al.  Partial Riemann problem, boundary conditions, and gas dynamics , 2011, 1101.2752.

[20]  J. Cortes On the construction of upwind schemes for non-equilibrium transient two-phase flows , 2002 .

[21]  V. Selmin,et al.  The node-centred finite volume approach: bridge between finite differences and finite elements , 1993 .

[22]  Stéphane Lanteri,et al.  Simulation of compressible viscous flows on a variety of MPPs: computational algorithms for unstructured dynamic meshes and performance results , 1994 .

[23]  Jean-Michel Ghidaglia,et al.  On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .

[24]  M. Lukáčová-Medvid'ová,et al.  Combined finite element-finite volume solution of compressible flow , 1995 .

[25]  Alain Dervieux,et al.  On the Application of FMG to Variational Approximation of Flow Problems , 1999 .

[26]  Dohyung Lee,et al.  Local preconditioning of the Euler and Navier-Stokes equations. , 1996 .

[27]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[28]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[29]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[30]  V. Dolejší,et al.  Numerical simulation of compressible viscous flow through cascades of profiles , 1996 .

[31]  Alain Dervieux,et al.  Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .

[32]  R. I. Issa,et al.  Numerical computation of internal and external flows, volume 2: Computational methods for inviscid and viscous flows , 1991 .

[33]  D. Drew,et al.  Application of general constitutive principles to the derivation of multidimensional two-phase flow equations , 1979 .

[34]  Heinz-Otto Kreiss,et al.  Time-Dependent Partial Differential Equations And Their Numerical Solution , 2001 .

[35]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[36]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[37]  Alain Dervieux,et al.  Steady Euler simulations using unstructured meshes , 1985 .

[38]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[39]  R. S. Amando Numerical computation of internal and external flows, volume 1: Fundamentals of numerical discretization , 1989 .

[40]  J.-M. Ghidaglia FLUX SCHEMES FOR SOLVING NONLINEAR SYSTEMS OF CONSERVATION LAWS , 2001 .

[41]  Bruno Stoufflet,et al.  TVD Schemes to Compute Compressible Viscous Flows on Unstructured Meshes , 1989 .

[42]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[43]  Philippe Angot,et al.  Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .

[44]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[45]  Arthur Rizzi,et al.  Numerical methods for the computation of inviscid transonic flkows with shock waves , 1981 .

[46]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[47]  David L. Darmofal,et al.  Eigenmode Analysis of Boundary Conditions for the One-Dimensional Preconditioned Euler Equations , 1999 .

[48]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[49]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .