DsixTools: the standard model effective field theory toolkit

We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the $$\Delta B = \Delta S = 1,2$$ΔB=ΔS=1,2 and $$\Delta B = \Delta C = 1$$ΔB=ΔC=1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale.

[1]  Jason Aebischer,et al.  Matching of gauge invariant dimension-six operators for b → s and b → c transitions , 2015, 1512.02830.

[2]  L. F. Abbott,et al.  Effective Hamiltonian for nucleon decay , 1980 .

[3]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[4]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory: (III). Scalar quartic couplings , 1984 .

[5]  Jason Aebischer,et al.  B physics beyond the Standard Model at one loop: complete renormalization group evolution below the electroweak scale , 2017, Journal of High Energy Physics.

[6]  Michael Trott,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[7]  Steven Weinberg,et al.  Baryon and Lepton Nonconserving Processes , 1979 .

[8]  Rodrigo Alonso,et al.  Renormalization group evolution of dimension-six baryon number violating operators , 2014, 1405.0486.

[9]  M. T. Vaughn,et al.  Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization , 1983 .

[10]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[11]  Hitoshi Murayama,et al.  One-loop matching and running with covariant derivative expansion , 2016, 1604.01019.

[12]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[13]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2014, 1412.1837.

[14]  Tevong You,et al.  Mixed heavy–light matching in the Universal One-Loop Effective Action , 2016, 1604.02445.

[15]  Thomas Hahn,et al.  SUSY Les Houches Accord 2 , 2007, Comput. Phys. Commun..

[16]  M. Luo,et al.  Two-loop renormalization group equations in the standard model. , 2002, Physical review letters.

[17]  Zhengkang Zhang,et al.  Covariant diagrams for one-loop matching , 2016, 1610.00710.

[18]  John Ellis,et al.  The universal one-loop effective action , 2015, 1512.03003.

[19]  M. T. Vaughn,et al.  Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings , 1984 .

[20]  A. Dedes,et al.  Feynman rules for the Standard Model Effective Field Theory in Rξ-gauges , 2017, 1704.03888.

[21]  G. Passarino,et al.  Low energy behaviour of standard model extensions , 2016, 1603.03660.

[22]  P Skands,et al.  SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators , 2003, hep-ph/0311123.

[23]  Jason Aebischer,et al.  Matching of gauge invariant dimension 6 operators for b to s and b to c transitions , 2016 .

[24]  Z. Kunszt,et al.  One-loop effective lagrangians after matching , 2016, 1602.00126.

[25]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[26]  J. Fuentes-Martín,et al.  Integrating out heavy particles with functional methods: a simplified framework , 2016, 1607.02142.