Finite-difference strategy for elastic wave modelling on curved staggered grids

Waveform modelling is essential for seismic imaging and inversion. Because including more physical characteristics can potentially yield more accurate Earth models, we analyse strategies for elastic seismic wave propagation modelling including topography. We focus on using finite differences on modified staggered grids. Computational grids can be curved to fit the topography using distribution functions. With the chain rule, the elasto-dynamic formulation is adapted to be solved directly on curved staggered grids. The chain-rule approach is computationally less expensive than the tensorial approach for finite differences below the 6th order, but more expensive than the classical approach for flat topography (i.e. rectangular staggered grids). Free-surface conditions are evaluated and implemented according to the stress image method. Non-reflective boundary conditions are simulated via a Convolutional Perfect Matching Layer. This implementation does not generate spurious diffractions when the free-surface topography is not horizontal, as long as the topography is smoothly curved. Optimal results are obtained when the angle between grid lines at the free surface is orthogonal. The chain-rule implementation shows high accuracy when compared to the analytical solution in the case of the Lamb’s problem, Garvin’s problem and elastic interface.

[1]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[2]  A. J. McConnell,et al.  Application of tensor analysis , 1957 .

[3]  Leonid Dovgilovich,et al.  High-accuracy finite-difference schemes for solving elastodynamic problems in curvilinear coordinates within multiblock approach , 2014 .

[4]  Luc Giraud,et al.  New curvilinear scheme for elastic wave propagation in presence of curved topography , 2011 .

[5]  Bent O. Ruud,et al.  2D finite‐difference elastic wave modelling including surface topography1 , 1994 .

[6]  Beatriz Otero,et al.  Low dispersive modeling of Rayleigh waves on partly staggered grids , 2014, Computational Geosciences.

[7]  Marcel Vinokur,et al.  Conservation equations of gasdynamics in curvilinear coordinate systems , 1974 .

[8]  Steven M. Day,et al.  Misfit Criteria for Quantitative Comparison of Seismograms , 2006 .

[9]  Rune Mittet,et al.  Free-surface boundary conditions for elastic staggered-grid modeling schemes , 2002 .

[10]  Erik H. Saenger,et al.  Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves , 2006 .

[11]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[12]  S. Hestholm,et al.  2D surface topography boundary conditions in seismic wave modelling , 2001 .

[13]  Jonathan M. Lees,et al.  Elastic Wave Propagation and Generation in Seismology , 2003 .

[14]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[15]  Réjean Girard Spreadsheet routine for the management of structural data with a microcomputer , 1992 .

[16]  Henri Calandra,et al.  A review of the spectral, pseudo‐spectral, finite‐difference and finite‐element modelling techniques for geophysical imaging , 2011 .

[17]  C. Chapman Fundamentals of Seismic Wave Propagation: Frontmatter , 2004 .

[18]  Martin Käser,et al.  Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators , 2001 .

[19]  Vadim Lisitsa,et al.  Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes , 2012, Computational Geosciences.

[20]  Dimitri Komatitsch,et al.  Tensorial formulation of the wave equation for modelling curved interfaces , 1996 .

[21]  Jeremy E. Kozdon,et al.  Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods , 2013, J. Sci. Comput..

[22]  Peter Moczo,et al.  Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes , 2002 .

[23]  D. Appelö,et al.  A stable finite difference method for the elastic wave equation on complex geometries with free surfaces , 2007 .

[24]  A. T. Hoop,et al.  A modification of cagniard’s method for solving seismic pulse problems , 1960 .

[25]  Alternative waveform inversion for surface wave analysis in 2-D media , 2014 .

[26]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[27]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[28]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[29]  Bent O. Ruud,et al.  3-D finite-difference elastic wave modeling including surface topography , 1998 .

[30]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[31]  Mauricio Hanzich,et al.  Mimetic seismic wave modeling including topography on deformed staggered grids , 2014 .

[32]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[33]  Jianghai Xia,et al.  Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach , 2007 .

[34]  F. S. Lamb,et al.  On the Propagation of Tremors over the Surface of an Elastic Solid , 1904 .

[35]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[36]  Wei Zhang,et al.  Traction image method for irregular free surface boundaries in finite difference seismic wave simulation , 2006 .

[37]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[38]  J. W. Dunkin,et al.  Computation of modal solutions in layered, elastic media at high frequencies , 1965 .

[39]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[40]  Wei Zhang,et al.  Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids , 2012 .

[41]  W. Garvin,et al.  Exact transient solution of the buried line source problem , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  B. O. Ruud,et al.  Seismic wave propagation in complex crust-upper mantle media using 2-D finite-difference synthetics , 1994 .

[43]  Vadim Lisitsa,et al.  Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity ‡ , 2010 .

[44]  Romain Brossier,et al.  Parsimonious finite-volume frequency-domain method for 2-D P–SV-wave modelling , 2008 .

[45]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[46]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[47]  Joël Piraux,et al.  Numerical treatment of two-dimensional interfaces for acoustic and elastic waves , 2004 .

[48]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[49]  Zhang Jianfeng,et al.  Quadrangle-grid velocity-stress finite-difference method for elastic-wave-propagation simulation , 1997 .

[50]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .