Dynamic functional and structural analysis of living cells: New tools for vital staining of nuclear DNA and for characterisation of cell motion

Increasing interest has been paid to applications of fluorescence measurements to analyze physiological mechanisms in living cells. However, few studies have taken advantage of DNA quantification by fluorometry for dynamic assessment of chromatin organization as well as cell motion during the cell cycle. This approach involves both optimal conditions for DNA staining and cell tracking methods. In this context, this report describes a stoichiometric method for nuclear DNA specific staining, using the bisbenzimidazole dye Hoechst 33342 associated with verapamil, a calcium membrane channel blocker. This method makes it possible to correlate variations of nuclear DNA content with cell motion in cells that are maintained alive. Motion measurement is the second goal of this paper and it explains the snake-spline method, and the associated cell following method.

[1]  La Taille,et al.  Courbes et surfaces , 1959 .

[2]  P. Laurent Approximation et optimisation , 1972 .

[3]  P. Sablonnière Spline and Bézier polygons associated with a polynomial spline curve , 1978 .

[4]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[5]  D. L. Taylor,et al.  Fluorescently labelled molecules as probes of the structure and function of living cells , 1980, Nature.

[6]  V. Ling,et al.  Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[8]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[9]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  A. Krishan Effect of drug efflux blockers on vital staining of cellular DNA with Hoechst 33342. , 1987, Cytometry.

[11]  M. Broggini,et al.  DNA damage, cytotoxic effect and cell-cycle perturbation of Hoechst 33342 on L1210 cells in vitro. , 1988, Cytometry.

[12]  Tim Blankenship,et al.  Real-Time Enhancement of Medical Ultrasound Images , 1988 .

[13]  D. A. Fay,et al.  Real-time early vision neurocomputing , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[14]  M. José-Yacamán,et al.  Image processing in TEM using the wavelet transform , 1991 .

[15]  Marie-Odile Berger Les contours actifs : modélisation, comportement et convergence , 1991 .

[16]  T. Yagi,et al.  A layered architecture for regularization vision chips , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[17]  James R. Fischer,et al.  Applications of the MasPar MP-1 at NASA/Goddard , 1991, COMPCON Spring '91 Digest of Papers.

[18]  C. Dussert,et al.  Nuclear texture parameters as discriminant factors in cell cycle and drug sensitivity studies. , 1991, Cytometry.

[19]  G.-H. Cottet Modèles de réaction-diffusion pour des réseaux de neurones stochastiques et déterministes , 1991 .

[20]  A Beghdadi,et al.  Entropic contrast enhancement. , 1991, IEEE transactions on medical imaging.

[21]  Alexander Toet,et al.  Multiscale contrast enhancement with applications to image fusion , 1992 .

[22]  J. H. Duncan,et al.  On the Detection of Motion and the Computation of Optical Flow , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  G. Brugal,et al.  Fluorescence image cytometry of nuclear DNA content versus chromatin pattern: a comparative study of ten fluorochromes. , 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[24]  J. González-Ros,et al.  Verapamil reverses the ultrastructural alterations in the plasma membrane induced by drug resistance , 1992, FEBS letters.

[25]  Azeddine Beghdadi,et al.  An image enhancement technique and its evaluation through bimodality analysis , 1992, CVGIP Graph. Model. Image Process..

[26]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[27]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[28]  Taek Mu Kwon,et al.  Design of regularization filters with linear neural networks (image restoration) , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[29]  Isaac Cohen,et al.  Modèles déformables 2-D et 3-D : application à la segmentation d'images médicales. (2-D and 3-D deformable models: application to the segmentation of medical images) , 1992 .

[30]  Hiroyuki Nakahira,et al.  An image processing system using Image Signal Multiprocessors (ISMPs) , 1993, J. VLSI Signal Process..

[31]  F. Leitner Segmentation dynamique d'images tridimensionnelles , 1993 .

[32]  Franck Neycenssac,et al.  Contrast Enhancement Using the Laplacian-of-a-Gaussian Filter , 1993, CVGIP Graph. Model. Image Process..

[33]  Tetsuya Yagi,et al.  Image processing regularization filters on layered architecture , 1993, Neural Networks.

[34]  Ming-Chieh Cheng,et al.  An automatic crossover point selection technique for image enhancement using fuzzy sets , 1993, Pattern Recognit. Lett..

[35]  Nicolas Rougon Elements pour la reconnaissance de formes tridimensionnelles deformables. Application a l'imagerie biomedicale , 1993 .

[36]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[37]  Masato Nakajima,et al.  Fast adaptive contrast enhancement method for the display of gray-tone images , 1994 .

[38]  Georges-Henri Cottet NEURAL NETWORKS: CONTINUOUS APPROACH AND APPLICATIONS TO IMAGE PROCESSING , 1995 .