On the Expressiveness of Real and Integer Arithmetic Automata (Extended Abstract)

If read digit by digit, a n-dimensional vector of integers represented in base r can be viewed as a word over the alphabet r n . It has been known for some time that, under this encoding, the sets of integer vectors recognizable by finite automata are exactly those definable in Presburger arithmetic if independence with respect to the base is required, and those definable in a slight extension of Presburger arithmetic if only a specific base is considered.

[1]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[2]  Bernard Boigelot,et al.  Symbolic Veri cation with Periodic Sets ? , 1994 .

[3]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[4]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[5]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[6]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[7]  Hubert Comon-Lundh,et al.  Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.

[8]  Pierre Wolper,et al.  Symbolic Verification with Periodic Sets , 1994, CAV.

[9]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[10]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[11]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[12]  Bernard Boigelot,et al.  An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems (Extended Abstract) , 1997, CAV.

[13]  Roger Villemaire,et al.  The Theory of (N, +, Vk, V1) is Undecidable , 1992, Theor. Comput. Sci..

[14]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[15]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .