Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell

Established in vitro models for SARS-CoV-2 infection are limited and include cell lines of non-human origin and those engineered to overexpress ACE2, the cognate host cell receptor. We identified human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of ACE2. Infection of H522 cells required the SARS-CoV-2 spike protein, though in contrast to ACE2-dependent models, spike alone was not sufficient for H522 infection. Temporally resolved transcriptomic and proteomic profiling revealed alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type-I interferon signaling. Focused chemical screens point to important roles for clathrin-mediated endocytosis and endosomal cathepsins in SARS-CoV-2 infection of H522 cells. These findings imply the utilization of an alternative SARS-CoV-2 host cell receptor which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.

[1]  Klaus H. Kaestner Lab Single-cell RNA sequencing v1 , 2021, protocols.io.

[2]  T. Peacock,et al.  SARS-CoV-2 one year on: evidence for ongoing viral adaptation , 2021, The Journal of general virology.

[3]  D. Fremont,et al.  Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies , 2021, Nature Medicine.

[4]  D. Fremont,et al.  Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization , 2021, Cell Host & Microbe.

[5]  Qiang Zhou,et al.  AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells , 2021, Cell Research.

[6]  Anirudh Prabhu,et al.  Reproducible Workflow , 2020, Transparent and Reproducible Social Science Research.

[7]  N. Neff,et al.  Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses , 2020, Nature Communications.

[8]  S. Neelamegham,et al.  Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration , 2020, eLife.

[9]  A. Helenius,et al.  Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity , 2020, Science.

[10]  Kara Dolinski,et al.  The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions , 2020, Protein science : a publication of the Protein Society.

[11]  N. McKenna,et al.  Consensus transcriptional regulatory networks of coronavirus-infected human cells , 2020, Scientific data.

[12]  Vineet D. Menachery,et al.  Evasion of Type I Interferon by SARS-CoV-2 , 2020, Cell Reports.

[13]  Benjamin P. Kellman,et al.  SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2 , 2020, Cell.

[14]  S. Chanda,et al.  MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells , 2020, Cell Reports.

[15]  A. Boon,et al.  A Simplified Quantitative Real-Time PCR Assay for Monitoring SARS-CoV-2 Growth in Cell Culture , 2020, mSphere.

[16]  Y. Xiong,et al.  Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA , 2020, bioRxiv.

[17]  Andrew Emili,et al.  SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors , 2020, bioRxiv.

[18]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[19]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[20]  Benjamin P. Kellman,et al.  SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2 , 2020, bioRxiv.

[21]  W. Zuo,et al.  Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2 , 2020, American journal of respiratory and critical care medicine.

[22]  N. Ban,et al.  SARS-CoV-2 Nsp1 binds ribosomal mRNA channel to inhibit translation , 2020, bioRxiv.

[23]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2 , 2020, Cell Host & Microbe.

[24]  Sebla B. Kutluay,et al.  A facile Q-RT-PCR assay for monitoring SARS-CoV-2 growth in cell culture , 2020, bioRxiv.

[25]  Florian P Bayer,et al.  Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing , 2020, Molecular & Cellular Proteomics.

[26]  Catherine E. Costello,et al.  CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 , 2020, bioRxiv.

[27]  Andrew R. Leach,et al.  The Global Phosphorylation Landscape of SARS-CoV-2 Infection , 2020, Cell.

[28]  I. Solomon,et al.  In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19 , 2020, Modern Pathology.

[29]  C. Rice,et al.  Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses , 2020, bioRxiv.

[30]  D. Matthews,et al.  Neuropilin-1 is a host factor for SARS-CoV-2 infection , 2020, Science.

[31]  D. Fremont,et al.  Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. , 2020, SSRN.

[32]  Akiko Iwasaki,et al.  Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19 , 2020, Cell Host & Microbe.

[33]  Lisa E. Gralinski,et al.  SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract , 2020, Cell.

[34]  D. Fremont,et al.  Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2 , 2020, bioRxiv.

[35]  S. Ciesek,et al.  Proteomics of SARS-CoV-2-infected host cells reveals therapy targets , 2020, Nature.

[36]  Fang Li,et al.  Cell entry mechanisms of SARS-CoV-2 , 2020, Proceedings of the National Academy of Sciences.

[37]  Asif Shajahan,et al.  Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2 , 2020, bioRxiv.

[38]  R. Schwartz,et al.  Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 , 2020, Cell.

[39]  Fabian J Theis,et al.  SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes , 2020, Nature Medicine.

[40]  T. Niewold Type I interferon , 2020, Cytokine.

[41]  O. Tsang,et al.  Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study , 2020, The Lancet Microbe.

[42]  Timothy K. Soh,et al.  Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2 , 2020, bioRxiv.

[43]  V. Cagno,et al.  SARS-CoV-2 cellular tropism , 2020, The Lancet Microbe.

[44]  Holger Moch,et al.  Endothelial cell infection and endotheliitis in COVID-19 , 2020, The Lancet.

[45]  Dong Yang,et al.  Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  Shinji Makino,et al.  An Infectious cDNA Clone of SARS-CoV-2 , 2020, Cell Host & Microbe.

[47]  Paul J. Hanson,et al.  Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue , 2020, European Respiratory Journal.

[48]  C. Lindskog,et al.  The protein expression profile of ACE2 in human tissues , 2020, bioRxiv.

[49]  Yan Liu,et al.  Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV , 2020, Nature Communications.

[50]  Jie Hao,et al.  Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection , 2020, Frontiers of Medicine.

[51]  Vineet D. Menachery,et al.  Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. , 2020, bioRxiv.

[52]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[53]  Zunyou Wu,et al.  Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. , 2020, JAMA.

[54]  Andrea Marzi,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[55]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[56]  Young-Jun Park,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[57]  B. Graham,et al.  Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation , 2020, bioRxiv.

[58]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[59]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[60]  Mi Seon Kim,et al.  Identification of Coronavirus Isolated from a Patient in Korea with COVID-19 , 2020, Osong public health and research perspectives.

[61]  A. Phelan,et al.  Baricitinib as potential treatment for 2019-nCoV acute respiratory disease , 2020, The Lancet.

[62]  Y. Hu,et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.

[63]  S. Rothenburg,et al.  Species-Specific Host-Virus Interactions: Implications for Viral Host Range and Virulence. , 2020, Trends in microbiology.

[64]  A. Walls,et al.  Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors , 2019, Nature Structural & Molecular Biology.

[65]  J. Hughes,et al.  TRIM69 Inhibits Vesicular Stomatitis Indiana Virus , 2019, Journal of Virology.

[66]  Alexandra C Walls,et al.  Structural basis for human coronavirus attachment to sialic acid receptors , 2019, Nature Structural & Molecular Biology.

[67]  B. Fielding,et al.  Coronavirus envelope protein: current knowledge , 2019, Virology Journal.

[68]  M. Diamond,et al.  Shared and Distinct Functions of Type I and Type III Interferons. , 2019, Immunity.

[69]  B. Bosch,et al.  Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A , 2019, Proceedings of the National Academy of Sciences.

[70]  T. Willson,et al.  WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop , 2019, Cell reports.

[71]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[72]  Wendy S. Barclay,et al.  Host and viral determinants of influenza A virus species specificity , 2018, Nature Reviews Microbiology.

[73]  Andreas Ruepp,et al.  CORUM: the comprehensive resource of mammalian protein complexes—2019 , 2018, Nucleic Acids Res..

[74]  Ronald J. Moore,et al.  Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry , 2018, Nature Protocols.

[75]  M. Raaben,et al.  Reconstruction of the cell entry pathway of an extinct virus , 2018, bioRxiv.

[76]  J. Schoggins Recent advances in antiviral interferon-stimulated gene biology , 2018, F1000Research.

[77]  A. Ustione,et al.  Establishment of the early cilia preassembly protein complex during motile ciliogenesis , 2018, Proceedings of the National Academy of Sciences.

[78]  Andrew D. Huber,et al.  Multiplex single-cell visualization of nucleic acids and protein during HIV infection , 2017, Nature Communications.

[79]  M. Tortorici,et al.  Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein , 2017, Proceedings of the National Academy of Sciences.

[80]  Y. Xiang,et al.  Structure of SARS-CoV spike glycoprotein , 2017 .

[81]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[82]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[83]  S. Makino,et al.  Viral and Cellular mRNA Translation in Coronavirus-Infected Cells , 2016, Advances in Virus Research.

[84]  E. Schmidt,et al.  Heparan Sulfate in the Developing, Healthy, and Injured Lung. , 2016, American journal of respiratory cell and molecular biology.

[85]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[86]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[87]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[88]  R. Baric,et al.  Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme , 2015, Journal of Virology.

[89]  Shibo Jiang,et al.  Receptor Usage and Cell Entry of Porcine Epidemic Diarrhea Coronavirus , 2015, Journal of Virology.

[90]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[91]  A. Kohara,et al.  The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[92]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[93]  S. Brody,et al.  Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction. , 2013, American journal of respiratory cell and molecular biology.

[94]  Kate S. Wilson,et al.  Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. , 2012, American journal of human genetics.

[95]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[96]  M. Diamond,et al.  Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis , 2012, PLoS pathogens.

[97]  M. Malim,et al.  HIV Restriction Factors and Mechanisms of Evasion. , 2012, Cold Spring Harbor perspectives in medicine.

[98]  G. Cheng,et al.  Systematic identification of type I and type II interferon-induced antiviral factors , 2012, Proceedings of the National Academy of Sciences.

[99]  Krishna Shankara Narayanan,et al.  Severe Acute Respiratory Syndrome Coronavirus Protein nsp1 Is a Novel Eukaryotic Translation Inhibitor That Represses Multiple Steps of Translation Initiation , 2012, Journal of Virology.

[100]  Krishna Shankara Narayanan,et al.  SARS Coronavirus nsp1 Protein Induces Template-Dependent Endonucleolytic Cleavage of mRNAs: Viral mRNAs Are Resistant to nsp1-Induced RNA Cleavage , 2011, PLoS pathogens.

[101]  C. D. de Haan,et al.  Binding of Avian Coronavirus Spike Proteins to Host Factors Reflects Virus Tropism and Pathogenicity , 2011, Journal of Virology.

[102]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[103]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[104]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[105]  Shinji Makino,et al.  A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein , 2009, Nature Structural &Molecular Biology.

[106]  Ping Li,et al.  The Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus Inhibits Cell Cytokinesis and Proliferation by Interacting with Translation Elongation Factor 1α , 2008, Journal of Virology.

[107]  Krishna Shankara Narayanan,et al.  Severe Acute Respiratory Syndrome Coronavirus nsp1 Suppresses Host Gene Expression, Including That of Type I Interferon, in Infected Cells , 2008, Journal of Virology.

[108]  D. Liu,et al.  Coronavirus Spike Protein Inhibits Host Cell Translation by Interaction with eIF3f , 2008, PloS one.

[109]  P. Masters,et al.  The Molecular Biology of Coronaviruses , 2006, Advances in Virus Research.

[110]  P. Palese,et al.  7a Protein of Severe Acute Respiratory Syndrome Coronavirus Inhibits Cellular Protein Synthesis and Activates p38 Mitogen-Activated Protein Kinase , 2006, Journal of Virology.

[111]  A. Lo,et al.  Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS‐CoV) and its putative receptor, angiotensin‐converting enzyme 2 (ACE2) , 2004, The Journal of pathology.

[112]  G. Navis,et al.  Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis , 2004, The Journal of pathology.

[113]  S. Schmid,et al.  Differential requirements for AP-2 in clathrin-mediated endocytosis , 2003, The Journal of cell biology.

[114]  B. Williams,et al.  ISG20, a New Interferon-induced RNase Specific for Single-stranded RNA, Defines an Alternative Antiviral Pathway against RNA Genomic Viruses* , 2003, The Journal of Biological Chemistry.

[115]  S. Brody,et al.  Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. , 2002, American journal of physiology. Lung cellular and molecular physiology.

[116]  S. Schmid,et al.  Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis , 2002, The Journal of cell biology.

[117]  L. Enjuanes,et al.  Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity , 1996, Journal of virology.

[118]  M Aguet,et al.  Functional role of type I and type II interferons in antiviral defense. , 1994, Science.

[119]  P. Staeheli,et al.  Mouse Mx2 protein inhibits vesicular stomatitis virus but not influenza virus. , 1992, Virology.

[120]  O. Haller,et al.  Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein , 1990, Journal of virology.

[121]  J. Rowley,et al.  Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[122]  P. Palese,et al.  Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[123]  S. Pestka,et al.  Convenient assay for interferons , 1981, Journal of virology.

[124]  J. Melnick,et al.  Defectiveness of Interferon Production and of Rubella Virus Interference in a Line of African Green Monkey Kidney Cells (Vero) , 1968, Journal of virology.

[125]  Florey,et al.  The endothelial cell. , 1966, British medical journal.

[126]  Qin Ning,et al.  Clinical and immunological features of severe and moderate coronavirus disease 2019 , 2020 .

[127]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[128]  R. Levi‐montalcini,et al.  Growth and differentiation. , 1962, Annual review of physiology.

[129]  P. Sarnow,et al.  Infectious cDNA Clone , 2022 .