Quantum Cascade Detectors

This paper gives an overview on the design, fabrication, and characterization of quantum cascade detectors. They are tailorable infrared photodetectors based on intersubband transitions in semiconductor quantum wells that do not require an external bias voltage due to their asymmetric conduction band profile. They thus profit from favorable noise behavior, reduced thermal load, and simpler readout circuits. This was demonstrated at wavelengths from the near infrared at 2 mum to THz radiation at 87 mum using different semiconductor material systems.

[1]  C. Manz,et al.  Midinfrared quantum cascade detector with a spectrally broad response , 2008 .

[2]  J. Faist,et al.  Short wavelength (4μm) quantum cascade detector based on strain compensated InGaAs∕InAlAs , 2008 .

[3]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[4]  C. Manz,et al.  InGaAs∕AlAsSb quantum cascade detectors operating in the near infrared , 2007 .

[5]  J. Faist,et al.  16.5μm quantum cascade detector using miniband transport , 2007 .

[6]  Esther Baumann,et al.  High frequency (f=2.37 GHz) room temperature operation of 1.55 /spl mu/m AlN/GaN-based intersubband detector , 2007 .

[7]  Jonathan F. Holzman,et al.  Tuning the intersubband absorption in strained AlAsSb/InGaAs quantum wells towards the telecommunications wavelength range , 2006 .

[8]  C. Koeniguer,et al.  Electronic transport in quantum cascade structures at equilibrium , 2006, cond-mat/0610373.

[9]  Daniel Hofstetter,et al.  23GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm , 2006 .

[10]  J. Faist,et al.  InP-based quantum cascade detectors in the mid-infrared , 2006 .

[11]  C. Manz,et al.  Room-temperature short-wavelength (λ∼3.7–3.9μm) GaInAs∕AlAsSb quantum-cascade lasers , 2006 .

[12]  Hui Luo,et al.  Terahertz Quantum Well Photodetectors , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Sir B. Rafol,et al.  Development of mid-wavelength and long-wavelength megapixel portable QWIP imaging cameras , 2005 .

[14]  Yuriy Fedoryshyn,et al.  Growth of AlAsSb/InGaAs MBE-layers for all-optical switches , 2005 .

[15]  V. Berger,et al.  High resistance narrow band quantum cascade photodetectors , 2005 .

[16]  M. Carras,et al.  Quantum cascade photodetector , 2004 .

[17]  E. Linfield,et al.  Terahertz range quantum well infrared photodetector , 2004 .

[18]  Junichiro Kono,et al.  Temperature dependence of intersubband transitions in InAs/AlSb quantum wells , 2003 .

[19]  Lester F. Eastman,et al.  GaN/AlN-based quantum-well infrared photodetector for 1.55 μm , 2003 .

[20]  M. Buchanan,et al.  Cutoff tailorability of heterojunction terahertz detectors , 2003 .

[21]  Mattias Beck,et al.  Quantum-cascade-laser structures as photodetectors , 2002 .

[22]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[23]  Mattias Beck,et al.  Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition , 2001 .

[24]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[25]  Martin Walther,et al.  Low-noise QWIPs for FPA sensors with high thermal resolution , 2000, SPIE Optics + Photonics.

[26]  O. Wada,et al.  Absorption saturation of near-infrared intersubband transition in lattice-matched InGaAs/AlAsSb quantum wells☆ , 2000 .

[27]  M. Sundaram,et al.  Quantum well infrared photodetectors , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[28]  Hui C. Liu,et al.  How good is the polarization selection rule for intersubband transitions , 1998 .

[29]  Martin Walther,et al.  Photovoltaic quantum well infrared photodetectors: The four-zone scheme , 1997 .

[30]  K. A. McIntosh,et al.  Quantum well intersubband heterodyne infrared detection up to 82 GHz , 1995, Photonics West.

[31]  Capasso,et al.  Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. , 1994, Physical review. B, Condensed matter.

[32]  H. Schneider,et al.  Optimized performance of quantum well intersubband infrared detectors: Photovoltaic versus photoconductive operation , 1993 .

[33]  Hui Chun Liu,et al.  Dependence of absorption spectrum and responsivity on the upper state position in quantum well intersubband photodetectors , 1993 .

[34]  K. M. S. V. Bandara,et al.  GaAs/AlGaAs superlattice miniband detector with 14.5 μm peak response , 1992 .

[35]  Frank Fuchs,et al.  Transport asymmetry and photovoltaic response in (AlGa)As/AlAs/GaAs/(AlGa)As single‐barrier quantum‐well infrared detectors , 1992 .

[36]  Frank Fuchs,et al.  Photovoltaic intersubband detectors for 3-5 mu m using GaAs quantum wells sandwiched between AlAs tunnel barriers , 1991 .

[37]  Kwong-Kit Choi,et al.  New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices , 1987 .

[38]  Federico Capasso,et al.  Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications , 1986 .

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  S. Winnerl,et al.  Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells , 2008 .

[41]  M. Helm,et al.  Chapter 1 The Basic Physics of Intersubband Transitions , 1999 .