Five New and Three Improved Mutual Orbits of Transneptunian Binaries

We present three improved and five new mutual orbits of transneptunian binary systems (58534) LogosZoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 � 10 17 to 2 � 10 22 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.

[1]  Harold F. Levison,et al.  Orbital and Collisional Evolution of the Irregular Satellites , 2003 .

[2]  D. Osip,et al.  PHYSICAL CHARACTERIZATION OF THE BINARY EDGEWORTH-KUIPER BELT OBJECT 2001 QT297 , 2003 .

[3]  J. R. Spencer,et al.  (42355) Typhon–Echidna: Scheduling observations for binary orbit determination , 2008 .

[4]  M. E. Brown,et al.  THE SIZE, DENSITY, AND FORMATION OF THE ORCUS–VANTH SYSTEM IN THE KUIPER BELT , 2009, 0910.4784.

[5]  M. W. Buie,et al.  Mutual orbits and masses of six transneptunian binaries , 2009 .

[6]  A. M. Ghez,et al.  HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES , 2010, 1001.4800.

[7]  E. Schaller,et al.  The Mass of Dwarf Planet Eris , 2007, Science.

[8]  Robert L. Millis,et al.  DETECTION OF TWO BINARY TRANS-NEPTUNIAN OBJECTS , 2002 .

[9]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[10]  William H. Press,et al.  Numerical recipes in C , 2002 .

[11]  Harold F. Levison,et al.  Evidence for two populations of classical transneptunian objects : The strong inclination dependence of classical binaries , 2007, 0711.1545.

[12]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[13]  S. Astakhov,et al.  Production of trans-Neptunian binaries through chaos-assisted capture , 2007, 0705.0475.

[14]  Re'em Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[15]  Franck Marchis,et al.  Angular momentum of binary asteroids: Implications for their possible origin ✩ , 2008 .

[16]  Joseph A. Burns,et al.  Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation , 1992 .

[17]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[18]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[19]  Marc William Buie,et al.  Physical properties of trans-neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna , 2012 .

[20]  Douglas M. Summers,et al.  LGS AO at W.M. Keck Observatory: routine operations and remaining challenges , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  J. Elliot,et al.  Discovery and characteristics of the Kuiper belt binary 2003QY90 , 2006 .

[22]  R. Sari,et al.  The Ratio of Retrograde to Prograde Orbits: A Test for Kuiper Belt Binary Formation Theories , 2008, 0803.0329.

[23]  R. O. Gray,et al.  ABSOLUTE PHYSICAL CALIBRATION IN THE INFRARED , 2008, 0806.1910.

[24]  J. R. Spencer,et al.  The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur , 2007, 0704.1523.

[25]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[26]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[27]  S. Cornell,et al.  A Giant Impact Origin of Pluto-Charon , 2005 .

[28]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[29]  H. Perets,et al.  KOZAI CYCLES, TIDAL FRICTION, AND THE DYNAMICAL EVOLUTION OF BINARY MINOR PLANETS , 2008, 0809.2095.

[30]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[31]  J. Krist The Tiny Tim User’s Guide , 2004 .

[32]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[33]  J. Kavelaars,et al.  DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING , 2010, 1009.3495.

[34]  T. Johnson,et al.  Irregular Satellites of the Giant Planets , 2008 .

[35]  K. Noll,et al.  Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005, astro-ph/0510130.

[36]  J. Petit,et al.  KBO binaries: how numerous were they? , 2004 .

[37]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[38]  K. S. Noll,et al.  Detection of Six Transneptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005 .

[39]  D. Ragozzine,et al.  THE OBSERVED ORBITAL PROPERTIES OF BINARY MINOR PLANETS , 2010, 1001.2558.

[40]  Steven Soter,et al.  Q in the solar system , 1966 .

[41]  D. Osip,et al.  The Orbit and Albedo of Trans-Neptunian Binary (58534) 1997 CQ29 , 2004, astro-ph/0407362.

[42]  M. W. Buie,et al.  The correlated colors of transneptunian binaries , 2009 .

[43]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[44]  K. Keil,et al.  Protostars and Planets V , 2007 .

[45]  Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders , 2005, astro-ph/0504060.

[46]  S. Weidenschilling On the Origin of Binary Transneptunian Objects , 2002 .

[47]  Marc W. Buie,et al.  Detection of two binary trans-Neptunian objects, 1997 CQ29 and 2000 CF105 with the Hubble Space Telescope , 2002 .

[48]  Alain Doressoundiram,et al.  The binary Kuiper-belt object 1998 WW31 , 2002, Nature.

[49]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[50]  L. Wasserman,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. I. Description of Methods and Initial Results , 2002 .

[51]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[52]  J. Margot,et al.  The Extreme Kuiper Belt Binary 2001 QW322 , 2008, Science.

[53]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[54]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .