Constraint Databases, Data Structures and Efficient Query Evaluation

Constraint databases that can be described by boolean combinations of polynomial inequalities over the reals have received ample research attention. In particular, the expressive power of first-order logic over the reals, as a constraint database query language, has been studied extensively. The difficulty of the effective evaluation of first-order queries, usually involving some form of quantifier elimination, has been largely neglected.

[1]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[2]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[3]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[4]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[5]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[6]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[7]  Marc Giusti,et al.  Le rôle des structures de données dans les problèmes d'élimination , 1997 .

[8]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996 .

[9]  Juan Sabia,et al.  On the Number of Sets Definable by Polynomials , 2000 .

[10]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[11]  Marc Giusti,et al.  The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..

[12]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[13]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[14]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[15]  Jan Van den Bussche,et al.  Complete geometrical query languages , 1997, PODS 1997.

[16]  Jan Van den Bussche,et al.  Towards a theory of spatial database queries (extended abstract) , 1994, PODS '94.

[17]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[18]  Teresa Krick,et al.  The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..

[19]  Joos Heintz,et al.  On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..

[20]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[21]  Stéphane Grumbach,et al.  Constraint Databases , 1999, JFPLC.

[22]  R. Tennant Algebra , 1941, Nature.

[23]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[24]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.

[25]  Jan Van den Bussche,et al.  Complete Geometric Query Languages , 1999, J. Comput. Syst. Sci..

[26]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[27]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[28]  Peter Z. Revesz,et al.  Introduction to Constraint Databases , 2002, Texts in Computer Science.

[29]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[30]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[31]  M. Giusti,et al.  Foundations of Computational Mathematics: Kronecker's smart, little black boxes , 2001 .

[32]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[33]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .

[34]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[35]  J. Verschelde Basic algebraic geometry: Igor R. Shafarevich Second, revised and expanded edition, translated by Miles Reid, Springer-Verlag, 1994 Volume 1: Varieties in projective space ISBN 3-540-54812-2, Softcover, DM 68. Volume 2: Schemes and complex manifolds ISBN 3-540-57554-5, Softcover, DM 68 , 1996 .

[36]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[37]  Jan Paredaens,et al.  Towards a theory of spatial database queries (extended abstract) , 1994, PODS.

[38]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[39]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[40]  B. D. Craven,et al.  Non-Linear Parametric Optimization (B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer) , 1984 .

[41]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.