Nanoscale rotational deformation in solids at high stresses

A special physical mode of plastic flow and nanograin formation in nanocrystalline and polycrystalline solids deformed at high stresses is suggested and theoretically described. The mode represents the nanoscale rotational deformation (NRD) occurring through the collective events of ideal nanoscale shear in solids. We calculated its stress and energy characteristics. It is found that NRD can effectively occur in nanocrystalline and polycrystalline solids during dynamic loading.

[1]  Ze Zhang,et al.  Transmission electron microscopy observations of dislocation annihilation and storage in nanograins , 2011 .

[2]  Bairu Li,et al.  Pseudoelastic stacking fault and deformation twinning in nanocrystalline Ni , 2010 .

[3]  E. Lavernia,et al.  Structure modulation driven by cyclic deformation in nanocrystalline NiFe. , 2010, Physical review letters.

[4]  I. Ovid’ko,et al.  Nanodisturbances in deformed nanowires. , 2009, Physical review letters.

[5]  C. Koch,et al.  Strong and ductile nanostructured Cu-carbon nanotube composite , 2009 .

[6]  A. Romanov,et al.  Application of disclination concept to solid structures , 2009 .

[7]  X. Liao,et al.  Twinning partial multiplication at grain boundary in nanocrystalline fcc metals , 2009 .

[8]  J. C. Ho,et al.  Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy , 2009 .

[9]  D. Li,et al.  Reversible movement of homogenously nucleated dislocations in a beta-titanium alloy. , 2009, Physical review letters.

[10]  G. Schumacher,et al.  Ion-beam-induced collective rotation of nanocrystals. , 2008, Physical review letters.

[11]  I. Ovid’ko,et al.  Special rotational deformation in nanocrystalline metals and ceramics , 2008 .

[12]  I. Ovid’ko,et al.  Homogeneous nucleation of dislocation loops in nanocrystalline metals and ceramics , 2008 .

[13]  I. Ovid’ko,et al.  Nanograin nucleation initiated by intergrain sliding and/or lattice slip in nanomaterials , 2008 .

[14]  Bairu Li,et al.  Deformation-induced grain rotation and growth in nanocrystalline Ni , 2008 .

[15]  Robert J. Asaro,et al.  Toward a quantitative understanding of mechanical behavior of nanocrystalline metals , 2007 .

[16]  Rajiv K. Kalia,et al.  Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide , 2007 .

[17]  I. Ovid’ko,et al.  Special strain hardening mechanism and nanocrack generation in nanocrystalline materials , 2007 .

[18]  C. Koch,et al.  Structural nanocrystalline materials: an overview , 2007 .

[19]  Ilya A. Ovid'ko,et al.  Nanodisturbances in deformed Gum Metal , 2006 .

[20]  Xiaolei Wu,et al.  Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: An experimental evaluation , 2006 .

[21]  Raymond F. Smith,et al.  Deforming nanocrystalline nickel at ultrahigh strain rates , 2006 .

[22]  Ronald O. Scattergood,et al.  Ultrahigh strength and high ductility of bulk nanocrystalline copper , 2005 .

[23]  Priya Vashishta,et al.  A Crossover in the Mechanical Response of Nanocrystalline Ceramics , 2005, Science.

[24]  J. Hosson,et al.  Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films , 2004 .

[25]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[26]  Ilya A. Ovid'ko,et al.  Plastic Deformation in Nanocrystalline Materials , 2004 .

[27]  N. Bernstein,et al.  Tight-binding calculations of stacking energies and twinnability in fcc metals , 2004 .

[28]  I. Ovid’ko,et al.  Deformation of Nanostructures , 2002, Science.

[29]  S. Takaki,et al.  Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe , 2002, Science.

[30]  E. Kaxiras,et al.  Generalized-stacking-fault energy surface and dislocation properties of aluminum , 1999, cond-mat/9903440.

[31]  W. W. Milligan,et al.  Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films , 1995 .

[32]  U. S. Lindholm,et al.  Shock Wave and High-Strain-Rate Phenomena in Materials , 1992 .

[33]  A. Radlinski,et al.  FORMATION OF AMORPHOUS FE-B ALLOYS BY MECHANICAL ALLOYING , 1991 .

[34]  L. Murr,et al.  Defect Generation in Shock-Wave Deformation , 1981 .