Nonexistence of positive solutions to a quasilinear elliptic system and blow-up estimates for a quasilinear reaction-diffusion system

The prior estimate and decay property of positive solutions are derived for a system of quasilinear elliptic differential equations first. Then, the nonexistence result for radially nonincreasing positive solutions of the system is implied. By using this nonexistence result, blow-up estimates for a class of quasilinear reaction-diffusion systems (non-Newtonian filtration systems) are established to extend the result for semilinear reaction-diffusion systems (Fujita type).

[1]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[2]  Shaohua Chen,et al.  Existence and nonexistence of positive radial solutions for a class of semilinear elliptic system , 1999 .

[3]  Enzo Mitidieri,et al.  Positive Solutions of Semilinear Elliptic Systems , 1992 .

[4]  Lambertus A. Peletier,et al.  Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation , 1992, Differential and Integral Equations.

[5]  P. Clément,et al.  Department of technical mathematics and informatics university of technology , 1993 .

[6]  Howard A. Levine,et al.  Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations , 1995 .

[7]  Blow-up estimates for a non-newtonian filtration system , 2001 .

[8]  E. Mitidieri Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf{R}^N$ , 1996, Differential and Integral Equations.

[9]  L. Martinson,et al.  Unsteady shear flows of a conducting fluid with a rheological power law , 1971 .

[10]  Juan Luis Vázquez,et al.  On the equation of turbulent filtration in one-dimensional porous media , 1986 .

[11]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[12]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[13]  Sining Zheng Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system , 1999 .

[14]  Fred B. Weissler,et al.  An L∞ blow‐up estimate for a nonlinear heat equation , 1985 .

[15]  Enzo Mitidieri,et al.  A RELLICH TYPE IDENTITY AND APPLICATIONS , 1993 .

[16]  Philippe Clément,et al.  Positive solutions for a quasilinear system via blow up , 1993 .

[17]  G. Sweers,et al.  Non-existence theorems for systems of quasilinear partial differential equations , 1995, Differential and Integral Equations.

[18]  G. Caristi,et al.  Blow-Up Estimates of Positive Solutions of a Parabolic System , 1994 .

[19]  J. Serrin,et al.  Nonexistence theorems for singular solutions of quasilinear partial differential equations , 1986 .