Carbon nanotube mode-locked optically-pumped semiconductor disk laser.

An optically pumped semiconductor disk laser was mode-locked for the first time by employing a single-walled carbon nanotube saturable absorber. Stable passive fundamental mode-locking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.

[1]  J. Lepore,et al.  An improved technique for selective etching of GaAs and Ga1−xAlxAs , 1980 .

[2]  Ursula Keller,et al.  Output-coupling semiconductor saturable absorber mirror , 2001 .

[3]  U. Keller,et al.  New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .

[4]  Juan L. A. Chilla,et al.  High-power optically pumped semiconductor lasers , 2004, SPIE LASE.

[5]  S. Y. Choi,et al.  Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers , 2012 .

[6]  L Grüner-Nielsen,et al.  Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. , 2000, Optics letters.

[7]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[8]  Jorg Hader,et al.  Vertical External Cavity Surface Emitting Semiconductor Lasers - Optically Pumped Semiconductor Lasers - , 2009 .

[9]  Stephan W Koch,et al.  Passively modelocked VECSEL emitting 682 fs pulses with 5.1W of average output power , 2012 .

[10]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[11]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[12]  James D. Meindl,et al.  Electrical and optical clock distribution networks for gigascale microprocessors , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[13]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[14]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[15]  Eric Cassan,et al.  Comparison between electrical and optical global clock distributions for CMOS integrated circuits , 2005 .

[16]  Hou-Ren Chen,et al.  High-power passively mode-locked Nd:GdVO 4 laser using single-walled carbon nanotubes as saturable absorber , 2011 .

[17]  A. Dalton,et al.  Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. , 2004, Physical review letters.

[18]  Adrian H. Quarterman,et al.  A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses , 2009 .

[19]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[20]  Günter Steinmeyer,et al.  Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1μm , 2008 .

[21]  Wen-Feng Hsieh,et al.  High-power passively mode-locked Nd:GdVO4 laser using single-walled carbon nanotubes as saturable absorber , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[22]  Theodor W. Hänsch,et al.  Optical Frequency Metrology with Solid State Lasers , 1993 .

[23]  A. Bhatnagar,et al.  Receiverless clocking of a CMOS digital circuit using short optical pulses , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[24]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[25]  Valdas Pasiskevicius,et al.  Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser. , 2011, Optics express.

[26]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.