Supernova neutrino detection

A core-collapse supernova will produce an enormous burst of neutrinos of all flavors in the few-tens-of-MeV range. Measurement of the flavor, time and energy structure of a nearby core-collapse neutrino burst will yield answers to many physics and astrophysics questions. The neutrinos left over from past cosmic supernovae are also observable, and their detection will improve knowledge of core collapse rates and average neutrino emission. This review describes experimental techniques for detection of core-collapse neutrinos, as well as the sensitivities of current and future detectors.

[1]  Black hole formation in core collapse supernovae and time-of-flight measurements of the neutrino masses , 2000, astro-ph/0010398.

[2]  M. Athar,et al.  νe(ν̄e)–40Ar absorption cross sections for supernova neutrinos , 2004 .

[3]  Y. Qian,et al.  Collective Neutrino Oscillations , 2010, 1001.2799.

[4]  I. Gil-Botella,et al.  Oscillation effects on supernova neutrino rates and spectra and detection of the shock breakout in a liquid argon TPC , 2003, hep-ph/0307244.

[5]  Georg G. Raffelt,et al.  New Supernova Limit on Large Extra Dimensions , 2001 .

[6]  M. Kachelrieß,et al.  Supernova pointing with low- and high-energy neutrino detectors , 2003, hep-ph/0307050.

[7]  Will M. Farr,et al.  Detection of supernova neutrinos by neutrino-proton elastic scattering , 2002 .

[8]  John F Beacom,et al.  Antineutrino spectroscopy with large water Cerenkov detectors. , 2004, Physical review letters.

[9]  K. Langanke,et al.  Role of ν-induced reactions on lead and iron in neutrino detectors , 2000, nucl-th/0003060.

[10]  C. Lunardini,et al.  Probing the neutrino mass hierarchy and the 13-mixing with supernovae , 2003 .

[11]  C. Lunardini,et al.  Supernova neutrinos: Earth matter e ects and neutrino mass spectrum , 2001 .

[12]  A. Schroeder,et al.  The Galactic supernova rate , 1994 .

[13]  Haxton Nuclear response of water Cherenkov detectors to supernova and solar neutrinos. , 1987, Physical review. D, Particles and fields.

[14]  A. Balantekin,et al.  Active–sterile neutrino conversion: consequences for the r-process and supernova neutrino detection , 2002, hep-ph/0205029.

[15]  K. Scholberg Supernova Neutrino Detection in Water Cherenkov Detectors , 2011 .

[16]  C. Volpe,et al.  What can be learned with a lead-based supernova-neutrino detector? , 2002, hep-ph/0209267.

[17]  A. Mirizzi,et al.  Role of dense matter in collective supernova neutrino transformations , 2008, 0807.0659.

[18]  Haxton Wc Neutrino reactions on oxygen and a proposed measurement of the Weinberg angle. , 1988 .

[19]  F. Halzen,et al.  Reconstructing the supernova bounce time with neutrinos in IceCube , 2009, 0908.2317.

[20]  Earth matter effects in supernova neutrinos: optimal detector locations , 2006, astro-ph/0604300.

[21]  D. Schramm,et al.  The Weak Neutral Current and its Effects in Stellar Collapse , 1977 .

[22]  E. al.,et al.  SNEWS: The Supernova Early Warning System , 2004, astro-ph/0406214.

[23]  Inoue,et al.  Real-time, directional measurement of 8B solar neutrinos in the Kamiokande II detector. , 1991, Physical review. D, Particles and fields.

[24]  R. Stokstad,et al.  A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory , 2006 .

[25]  A. Heijboer,et al.  The ANTARES telescope neutrino alert system , 2011, 1103.4477.

[26]  M. Kachelriess,et al.  Signatures of supernova neutrino oscillations in the Earth mantle and core , 2003, hep-ph/0311172.

[27]  S. Kim,et al.  Search for Supernova Neutrino Bursts at Super-Kamiokande , 2007 .

[28]  G. Ewan The Sudbury neutrino observatory , 2000 .

[29]  W Fulgione,et al.  Neutrinos from supernovae as a trigger for gravitational wave search. , 2009, Physical review letters.

[30]  L. Stodolsky,et al.  Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy , 1984 .

[31]  A. Mirizzi,et al.  Collective neutrino flavor transitions in supernovae and the role of trajectory averaging , 2007, 0707.1998.

[32]  R. Webb,et al.  Real time supernova neutrino burst detection with MACRO , 1998 .

[33]  C. Bertulani,et al.  Detection of supernova neutrinos with neutrino-iron scattering , 2008, 0802.1553.

[34]  Potential for supernova neutrino detection in MiniBooNE , 2002, hep-ph/0205035.

[35]  Raghavan Inverse beta - decay of 40Ar: A new approach for observing MeV neutrinos from laboratory and astrophysical sources. , 1986, Physical review. D, Particles and fields.

[36]  Halzen,et al.  Possibility that high energy neutrino telescopes could detect supernovae. , 1994, Physical review. D, Particles and fields.

[37]  S. Kim,et al.  Search for supernova relic neutrinos at Super-Kamiokande. , 2003, Physical review letters.

[38]  V. Pettorino,et al.  Supernova relic neutrinos in liquid argon detectors , 2004, hep-ph/0408031.

[39]  J. Beacom The Diffuse Supernova Neutrino Background , 2006, 1004.3311.

[40]  G. Raffelt,et al.  Detecting the neutrino mass hierarchy with a supernova at IceCube , 2003 .

[41]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[42]  P. Giusti,et al.  On-line recognition of supernova neutrino bursts in the LVD , 2008 .

[43]  M. Koshiba Observational neutrino astrophysics , 1987 .

[44]  Georg G. Raffelt,et al.  Particle physics from stars , 2003 .

[45]  D. Schramm,et al.  New physics from supernova 1987A , 1990 .

[46]  J. Kneller,et al.  Dynamical collective calculation of supernova neutrino signals. , 2009, Physical review letters.

[47]  S. Kim,et al.  Supernova Relic Neutrino Search at Super-Kamiokande , 2011, 1111.5031.

[48]  A. Dighe,et al.  Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .

[49]  A. Habig,et al.  HALO ? the helium and lead observatory for supernova neutrinos , 2008 .

[50]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[51]  M. Decowski,et al.  SEARCH FOR EXTRATERRESTRIAL ANTINEUTRINO SOURCES WITH THE KamLAND DETECTOR , 2011, 1105.3516.

[52]  G. Cini,et al.  The most powerful scintillator supernovae detector: LVD , 1992 .

[53]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[54]  P. Vogel,et al.  Weak reactions on 12C within the continuum random phase approximation with partial occupancies , 1999, nucl-th/9903022.

[55]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[56]  Detection possibility of the pair-annihilation neutrinos from the neutrino-cooled pre-supernova star , 2003, astro-ph/0311012.

[57]  C. Horowitz,et al.  Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector , 2003, astro-ph/0302071.

[58]  C. Volpe,et al.  The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties , 2011, 1105.6225.

[59]  Supernova neutrino detection in Borexino , 2000, hep-ph/0012082.

[60]  G. Raffelt,et al.  Adiabaticity and spectral splits in collective neutrino transformations , 2007, 0709.4641.

[61]  Johnson,et al.  Weak-interaction rates in 16O. , 1990, Physical review letters.

[62]  J. Toivanen,et al.  Supernova neutrino induced reactions on iron isotopes , 2001 .

[63]  W. C. Haxton,et al.  Prospects for detecting supernova neutrino flavor oscillations , 1999 .

[64]  S Hannestad,et al.  New supernova limit on large extra dimensions: bounds on Kaluza-Klein graviton production. , 2001, Physical review letters.

[65]  Anthony Mezzacappa,et al.  ASCERTAINING THE CORE COLLAPSE SUPERNOVA MECHANISM: The State of the Art and the Road Ahead , 2005 .

[66]  E. al.,et al.  First study of neutron tagging with a water Cherenkov detector , 2008, 0811.0735.

[67]  A. Habig,et al.  The Supernova Early Warning System , 2008, Nature Reviews Physics.

[68]  A. Friedland,et al.  Self-induced suppression of collective neutrino oscillations in a supernova. , 2010, Physical review letters.

[69]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[70]  G. Bologna,et al.  On the Event Observed in the Mont Blanc Underground Neutrino Observatory during the Occurrence of Supernova 1987a , 1987 .

[71]  J. Beacom,et al.  Core-collapse astrophysics with a five-megaton neutrino detector , 2008, 0810.1959.

[72]  Keitaro Takahashi,et al.  Effects of Neutrino Oscillation on Supernova Neutrino : Inverted Mass Hierarchy , 2002 .

[73]  S. Peeters,et al.  The rich neutrino programme of the SNO+ experiment , 2010 .

[74]  Z. Parsa,et al.  Neutrino electron scattering theory , 2003, hep-ph/0403168.

[75]  J. F. Beacom,et al.  Can a supernova be located by its neutrinos , 1999 .

[76]  G. Raffelt,et al.  Multiple spectral splits of supernova neutrinos. , 2009, Physical review letters.

[77]  D. Akimov Techniques and results for the direct detection of dark matter (review) , 2011 .

[78]  A. Rappoldi,et al.  Measurement of the mu decay spectrum with the ICARUS liquid argon TPC , 2004 .

[79]  M. Soderberg MicroBooNE: A New Liquid Argon Time Projection Chamber Experiment , 2009, 0910.3497.

[80]  S. Katsanevas,et al.  The MEMPHYS project , 2011 .

[81]  H. E. Dalhed,et al.  Future Detection of Supernova Neutrino Burst and Explosion Mechanism , 1997, astro-ph/9710203.

[82]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[83]  Y. Qian,et al.  Collective neutrino flavor transformation in supernovae , 2005, astro-ph/0511275.

[84]  R. Gaitskell DIRECT DETECTION OF DARK MAT TER , 2004 .

[85]  H. Janka,et al.  Fast time variations of supernova neutrino fluxes and their detectability , 2010, 1006.1889.

[86]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[87]  Kolbe,et al.  Inclusive 12C( nu micro, micro)12N reaction in the continuum random phase approximation. , 1995, Physical review. C, Nuclear physics.

[88]  M. Grassi,et al.  Determination of neutrino incoming direction in the CHOOZ experiment and supernova explosion location by scintillator detectors , 1999, hep-ex/9906011.

[89]  Burrows,et al.  The future of supernova neutrino detection. , 1992, Physical review. D, Particles and fields.

[90]  M. Sundaresan,et al.  A lead astronomical neutrino detector: LAND , 1996 .

[91]  J. Beacom,et al.  Detection of neutrinos from supernovae in nearby galaxies. , 2005, Physical review letters.

[92]  G. Karagiorgi,et al.  Search for core-collapse supernovae using the MiniBooNE neutrino detector , 2010 .

[93]  P. Vogel,et al.  Estimates of weak and electromagnetic nuclear decay signatures for neutrino reactions in Super-Kamiokande , 2002 .

[94]  A. Müller,et al.  Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects , 2007, 0705.0116.

[95]  H. Janka,et al.  Neutrino signal of electron-capture supernovae from core collapse to cooling , 2010 .